留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁控溅射与电子束蒸发制备Ti薄膜性能的研究

李兆营

李兆营. 磁控溅射与电子束蒸发制备Ti薄膜性能的研究[J]. 钢铁钒钛, 2023, 44(2): 98-102. doi: 10.7513/j.issn.1004-7638.2023.02.014
引用本文: 李兆营. 磁控溅射与电子束蒸发制备Ti薄膜性能的研究[J]. 钢铁钒钛, 2023, 44(2): 98-102. doi: 10.7513/j.issn.1004-7638.2023.02.014
Li Zhaoying. Study on properties of Ti films prepared by magnetron sputtering and electron beam evaporation[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 98-102. doi: 10.7513/j.issn.1004-7638.2023.02.014
Citation: Li Zhaoying. Study on properties of Ti films prepared by magnetron sputtering and electron beam evaporation[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 98-102. doi: 10.7513/j.issn.1004-7638.2023.02.014

磁控溅射与电子束蒸发制备Ti薄膜性能的研究

doi: 10.7513/j.issn.1004-7638.2023.02.014
详细信息
  • 中图分类号: TF823,TN305.8

Study on properties of Ti films prepared by magnetron sputtering and electron beam evaporation

  • 摘要: 为了研究不同制备方法对薄膜性能的影响,分别利用磁控溅射法和电子束蒸发法在长有500 nm厚的SiO2薄膜的Si(100)晶圆上制备了生长速度为1.0 nm/s,厚度为100 nm的Ti薄膜,并对薄膜的厚度、表面形貌、电阻、反射率及应力进行了测试。相比于电子束蒸发法,磁控溅射法制备的薄膜表面晶粒更加均匀致密,表面缺陷少,粗糙度较小,薄膜具有更低的电阻、应力以及更高的反射率。试验结果表明,磁控溅射法制备的薄膜电性能优于电子束蒸发法。电子束蒸发法制备的薄膜应力具有较大的变化范围,可用于多层膜之间的应力匹配调试。同时,也可以通过减少薄膜表面结构缺陷,减小薄膜表面粗糙度来提高薄膜的性能。
  • 图  1  25 ℃下磁控溅射法(a)和电子束蒸发法(b)制备的Ti薄膜表面的AFM形貌

    Figure  1.  AFM morphologies of Ti films prepared by magnetron sputtering(a) and electron beam evaporation(b) at 25 ℃

    图  2  不同温度下磁控溅射法和电子束蒸发法制备的Ti薄膜的残余应力

    Figure  2.  Residual stress of Ti films prepared by magnetron sputtering and electron beam evaporation at different temperatures

    表  1  25 ℃下磁控溅射法和电子束蒸发法制备的Ti薄膜性能比较

    Table  1.   Properties of Ti films prepared by magnetron sputtering and electron beam evaporation at 25 ℃

    制备方法电阻/Ω电阻均匀性U/%反射率/%
    磁控溅射法7.20.9255.4
    电子束蒸发法8.12.2453.4
    下载: 导出CSV
  • [1] Zhang L, Shi L Q, He Z J, et al. Deposition of dense and smooth Ti films using ECR plasma-assisted magnetron sputtering[J]. Surface and Coatings Technology, 2009,203(22):3356−3360. doi: 10.1016/j.surfcoat.2009.04.022
    [2] Jin Y, Wu W, Li L, et al. Effect of sputtering power on surface topography of dc magnetron sputtered Ti thin films observed by AFM[J]. Applied Surface Science, 2009,25(8):4673−4679.
    [3] Jeyachandran Y L, Karunagaran B, Narayandass S K, et al. Properties of titanium thin films deposited by dc magnetron sputtering[J]. Materials Science and Engineering A, 2006,431(1/2):277−284.
    [4] Savaloni H, Faridshayegan F. Film thickness dependence on the optical properties of sputtered and UHV deposited Ti thin films[J]. Vacuum, 2010,85(3):458−465. doi: 10.1016/j.vacuum.2010.08.023
    [5] Wang Hong, Wang Jinshu, Li Chun, et al. Effects of deposition parameters on microstructure of magnetron sputtered Ti films and the following anodization[J]. Journal of Beijing University of Technology, 2013,(2):263−268. (王鸿, 王金淑, 李春, 等. 磁控溅射参数对钛薄膜结构及阳极氧化的影响[J]. 北京工业大学学报, 2013,(2):263−268.
    [6] Cai Changlong, Liu Jingwei, Wu Shenjiang. The preparation technology and physical characteristics research of titanium films[J]. Initiators & Pyrotechnics, 2015,(4):17−20. (蔡长龙, 刘经纬, 吴慎将. 钛薄膜制备工艺及物理特性研究[J]. 火工品, 2015,(4):17−20.
    [7] Wu Yangwei, Zheng Mingzhi, Lin Limei, et al. Structural and optical properties of titanium films prepared by magnetron sputtering[J]. Journal of Fujian Normal University(Natural Science Edition), 2012,28(4):31−35. (吴杨微, 郑明志, 林丽梅, 等. 磁控溅射制备钛薄膜的结构和光学性质[J]. 福建师范大学学报(自然科学版), 2012,28(4):31−35.
    [8] Cai K, Muller M, Bossert J, et al. Surface structure and composition of flat titanium thin films as a function of film thickness and evaporation rate[J]. Applied Surface Science, 2005,250(1-4):252−267. doi: 10.1016/j.apsusc.2005.01.013
    [9] Zou Penghui, Huang Nianning, Wang Yanshuo, et al. The effect of evaporation rate on the Ti/GaAs schottky barrier[J]. Research & Progress of SSE, 2015,35(5):502−505, 511. (邹鹏辉, 黄念宁, 王彦硕, 等. 电子束蒸发速率对Ti/GaAs肖特基势垒特性的影响[J]. 固体电子学研究与进展, 2015,35(5):502−505, 511.
    [10] Arshi N, Junqing L U, Chan G L, et al. Thickness effect on properties of titanium film deposited by d.c. magnetron sputtering and electron beam evaporation techniques[J]. Bulletin of Materials Science, 2013,36(5):807−812. doi: 10.1007/s12034-013-0552-2
    [11] Yu Fengbin, Xia Xianghua, Zhu Deming, et al. Study on performance of Al/PI films prepared by electron beam evaporation and magnetron sputtering[J]. Materials China, 2008,27(6):21−24. (余凤斌, 夏祥华, 朱德明, 等. 电子束蒸发与磁控溅射制备Al/PI复合薄膜的性能研究[J]. 中国材料进展, 2008,27(6):21−24.
    [12] Li Changwei, Zhang Chujing, Kong Lingqi. Effect of resistance thermal evaporation and magnetron sputtering deposition on two-dimensional Ag nanoparticle array structure[J]. New Chemical Materials, 2014,42(8):67−69. (李昌伟, 张春婧, 孔令琦. 电阻热蒸发与磁控溅射对制备二维银纳米阵列的影响[J]. 化工新型材料, 2014,42(8):67−69.
    [13] Gao Li, Zhang Jianmin. Comparisons between ZnO thin films fabricated by RF-magnetron sputtering and electron-beam evaporation[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2009,37(3):23−27. (高立, 张建民. 射频磁控溅射和电子束蒸发制备ZnO薄膜特性的比较[J]. 陕西师范大学学报:自然科学版, 2009,37(3):23−27.
    [14] Li Kun, Xiong Yuqing, Wang Hu, et al. Effect of evaporation rate on the properties of ZnS films[J]. Vacuum, 2021,58(2):15−19. (李坤, 熊玉卿, 王虎, 等. 蒸发速率对ZnS薄膜性能的影响[J]. 真空, 2021,58(2):15−19. doi: 10.13385/j.cnki.vacuum.2021.02.04
    [15] Palasantzas G. Influence of anomalous roughness growth on the electrical conductivity of thin films[J]. Physical Review B, 2005,71(20):205320.1−205320.5.
    [16] Zhao Yiran, Chen Junfang, Shao Shiyun, et al. Electrical property of TiN film deposited by electron beam evaporation[J]. Semiconductor Optoelectronics, 2012,33(1):90−93. (赵益冉, 陈俊芳, 邵士运, 等. 电子束蒸发沉积TiN薄膜的电学特性研究[J]. 半导体光电, 2012,33(1):90−93. doi: 10.16818/j.issn1001-5868.2012.01.022
    [17] Liu Yingguang, Han Xiao, Hao Jiangshuai. Effect of grain boundary geometry on the thermal conduction of nanocrystalline ZnO[J]. Rare Metal Materials and Engineering, 2021,50(3):924−931. (刘英光, 韩笑, 郝将帅. 晶界几何结构对纳晶ZnO材料导热过程的影响[J]. 稀有金属材料与工程, 2021,50(3):924−931.
    [18] Zhu Jingtao, Yue Shuaipeng, Tu Yuchun, et al. Preparation of Co/Ti multilayer in soft X-ray region by nitrogen reactive sputtering[J]. Optics and Precision Engineering, 2015,23(1):10−14. (朱京涛, 岳帅鹏, 涂昱淳, 等. 氮气反应溅射制备软X射线Co/Ti多层膜[J]. 光学精密工程, 2015,23(1):10−14. doi: 10.3788/OPE.20152301.0010
    [19] Yu Yiting, Fan Weizheng, Qiao Dayong. Application of curvature measurement technique for measuring residual stresses in MEMS thin film[J]. Chinese Journal of Mechanical Engineering, 2007,43(3):78−81. (虞益挺, 苑伟政, 乔大勇. 曲率测量技术在微机电系统薄膜残余应力测量中的应用[J]. 机械工程学报, 2007,43(3):78−81. doi: 10.3901/JME.2007.03.078
    [20] Li Zhaoying, Gong Yansheng, Tian Yongshang, et al. Effect of deposition temperature on structure and surface morphology of TiN thin films prepared by radio frequency magnetron sputtering[J]. Electroplating & Finishing, 2013,32(12):39−41. (李兆营, 公衍生, 田永尚, 等. 沉积温度对射频磁控溅射 TiN 薄膜结构和表面形貌的影响[J]. 电镀与涂饰, 2013,32(12):39−41. doi: 10.3969/j.issn.1004-227X.2013.12.010
    [21] Zhao Hengli, Yang Peizhi, Li Sai. Effects of deposition temperature on structures and properties of HfO2 thin films prepared by ALD[J]. Semiconductor Technology, 2022,47(3):205−210, 242. (赵恒利, 杨培志, 李赛. 沉积温度对ALD制备HfO2薄膜结构和性能的影响[J]. 半导体技术, 2022,47(3):205−210, 242.
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  174
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-20
  • 刊出日期:  2023-04-30

目录

    /

    返回文章
    返回