留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁尾矿无溶剂法绿色高效制备ZSM-5分子筛

刘润琪 朱燕玉 陈星月 张鹏

刘润琪, 朱燕玉, 陈星月, 张鹏. 铁尾矿无溶剂法绿色高效制备ZSM-5分子筛[J]. 钢铁钒钛, 2023, 44(2): 111-117. doi: 10.7513/j.issn.1004-7638.2023.02.016
引用本文: 刘润琪, 朱燕玉, 陈星月, 张鹏. 铁尾矿无溶剂法绿色高效制备ZSM-5分子筛[J]. 钢铁钒钛, 2023, 44(2): 111-117. doi: 10.7513/j.issn.1004-7638.2023.02.016
Liu Runqi, Zhu Yanyu, Chen Xingyue, Zhang Peng. Sustainable synthesis of ZSM-5 zeolite from iron ore tailings[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 111-117. doi: 10.7513/j.issn.1004-7638.2023.02.016
Citation: Liu Runqi, Zhu Yanyu, Chen Xingyue, Zhang Peng. Sustainable synthesis of ZSM-5 zeolite from iron ore tailings[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 111-117. doi: 10.7513/j.issn.1004-7638.2023.02.016

铁尾矿无溶剂法绿色高效制备ZSM-5分子筛

doi: 10.7513/j.issn.1004-7638.2023.02.016
基金项目: 山西省基础研究计划资助项目(202103021223277); 太原科技大学博士科研启动基金项目(20212025);来晋工作优秀博士奖励资金项目(20222080)
详细信息
    作者简介:

    张鹏,1990 年出生,男,吉林白山人,博士,讲师,通讯作者,长期从事冶金固废资源化利用方向研究,E-mail:15242389785@163.com

    通讯作者:

    张鹏,1990 年出生,男,吉林白山人,博士,讲师,通讯作者,长期从事冶金固废资源化利用方向研究,E-mail:15242389785@163.com

  • 中图分类号: X757,TQ426

Sustainable synthesis of ZSM-5 zeolite from iron ore tailings

  • 摘要: 针对河北承德某地区铁尾矿硅铝含量高的特点,以该尾矿为原料制备ZSM-5分子筛。目前,以固体废弃物为原料合成分子筛通常采用水热法,合成工艺复杂、单釜利用率低且产生废水,严重限制了以固体废弃物为原料合成分子筛的大规模应用。该研究提出以无溶剂法合成ZSM-5分子筛,在分子筛合成过程中无液体溶剂参与,因此更加绿色环保。研究表明,ZSM-5分子筛最佳合成参数为:HDA/SiO2=0.1、Na2CO3·10H2O/SiO2=0.4,150 °C晶化6 d,此时得到的ZSM-5分子筛同时具有介、微复合孔结构,其中微孔表面积为213.2 m2/g,外表面积为95.53 m2/g。此外,无溶剂法合成分子筛的元素利用率高于传统水热法,无溶剂法Si和Al的元素利用率分别为94.83%、95.89%,而水热法仅为80%左右。
  • 图  1  铁尾矿无溶剂制备ZSM-5分子筛示意

    Figure  1.  Schematic diagram of solvent-free preparation of ZSM-5 molecular sieve from IOT

    图  2  不同晶化时间产物的XRD谱

    Figure  2.  XRD patterns of products with different crystallization time

    图  3  不同晶化时间样品的SEM-EDS图像

    Figure  3.  SEM-EDS images of samples at different crystallization time

    图  4  不同Na2CO3·10H2O/SiO2摩尔比样品XRD谱

    Figure  4.  XRD patterns of samples with different Na2CO3·10H2O/SiO2 molar ratios

    图  5  不同HDA/SiO2摩尔比产物的XRD谱

    Figure  5.  XRD patterns of products with different HDA/SiO2 molar ratios

    图  6  铁尾矿、ZSM-5分子筛的氮气吸附脱附曲线(a)和BJH吸附孔径分布(b)

    Figure  6.  N2 adsorption–desorption isotherms (a) and BJH adsorption pore distributions (b) of IOT and ZSM-5 zeolite

    表  1  预处理前后铁尾矿成分

    Table  1.   The compositions of IOT before and after treatment %

    SiO2Al2O3杂质
    Fe2O3CaOK2OMgONa2O
    预处理前68.6413.149.473.412.242.260.74
    预处理后91.911.512.491.100.490.601.79
    下载: 导出CSV

    表  2  铁尾矿和ZSM-5分子筛的吸脱附数据

    Table  2.   Physicochemical properties of IOT and ZSM-5 zeolite

    比表面积/
    ( m2∙g−1)
    微孔表面积/
    ( m2∙g−1)
    外表面积/
    ( m2∙g−1)
    孔体积/
    (cm3∙g−1)
    微孔体积/
    ( cm3∙g−1)
    介孔体积/
    (cm3∙g−1)
    BJH吸附平均
    直径/nm
    铁尾矿26.511.0825.430.0420.0422.142
    ZSM-5 分子筛308.78213.2595.530.1960.11040.0924.587
    下载: 导出CSV
  • [1] Yan Qinping. Study on the development and utilization of iron ore tailings in China[J]. Scrap Iron and Steel in China, 2014,(3):33−38. (闫启平. 我国铁矿尾矿渣粉开发利用之研究[J]. 中国废钢铁, 2014,(3):33−38.
    [2] Zhang Peng, Chen Xingyue, Ren Zhifeng, et al. Investigating kinetics in preparation of precipitated silica from iron ore tailings[J]. Iron Steel Vanadium Titanium, 2014,43(3):33−38. (张鹏, 陈星月, 任志峰, 等. 铁尾矿煅烧酸浸法制备白炭黑及动力学研究[J]. 钢铁钒钛, 2014,43(3):33−38.
    [3] Deng Wen, Jiang Dengbang, Yang Bo, et al. Comprehensive utilization status and existing problems of iron tailings in China[J]. Modern Mining, 2012,(9):1−3. (邓文, 江登榜, 杨波, 等. 我国铁尾矿综合利用现状和存在的问题[J]. 现代矿业, 2012,(9):1−3. doi: 10.3969/j.issn.1674-6082.2012.09.001
    [4] Mc Donald J E D, Roache S S C, Kawatra K. Repurposing mine tailings: Cold bonding of siliceous iron ore tailings[J]. Minerals & Metallurgical Processing, 2016,31(1):47−52.
    [5] Osinubi K J, Yohanna P, Eberemu A O. Cement modification of tropical black clay using iron ore tailings as admixture[J]. Transportation Geotechnics, 2015,10(5):35−49.
    [6] Sirkeei A A, Gul A, Bulut G. Recovery of Co, Ni, and Cu from the tailings of divrigi iron ore concentrator[J]. Mineral Processing and Extractive Metallurgy Review, 2006,27(2):131−141. doi: 10.1080/08827500600563343
    [7] Wang C L, Ni W, Zhang S Q, et al. Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings[J]. Construction and Building Materials, 2016,104(1):109−115.
    [8] Liu X F, Zhang S J, Wang R W, et al. Sustainable synthesis of hierarchically porous silicalite-1 zeolite by steam-assisted crystallization of solid raw materials without secondary templates[J]. Chemical Research in Chinese Universities, 2018,34(3):350−357. doi: 10.1007/s40242-018-7400-2
    [9] Li K, Valla J, Garcia-Martinez J. Realizing the commercial potential of hierarchical zeolites: New opportunities in catalytic cracking[J]. Chem Cat Chem, 2014,6(1):67−81.
    [10] Li J, Wei Z, Chen Y, et al. A route to form initial hydrocarbon pool species in methanol conversion to olefins over zeolites[J]. Journal of Catalysis, 2014,317:277−283. doi: 10.1016/j.jcat.2014.05.015
    [11] Sun X Y, Mueller S, Shi H, et al. On the impact of co-feeding aromatics and olefins for the methanol-to-olefins reaction on HZSM-5[J]. Journal of Catalysis, 2014,314:21−31. doi: 10.1016/j.jcat.2014.03.013
    [12] Kim Y, Kim K, Ryoo R. Cooperative structure direction of diammonium surfactants and sodium ions to generate MFI zeolite nanocrystals of controlled thickness[J]. Chemistry of Materials, 2017,29(4):1752−1757. doi: 10.1021/acs.chemmater.6b05338
    [13] Kyungsu N, Minkee C, Woojin P, et al. Pillared MFI zeolite nanosheets of a single-unit-cell thickness[J]. Journal of the American Chemical Society, 2010,132(12):4169−4177. doi: 10.1021/ja908382n
    [14] Akyalcin S, Akyalcin L, Bjørgen M. Optimization of desilication parameters of low-silica ZSM-12 by Taguchi method[J]. Microporous and Mesoporous Materials, 2019,273(1):256−264.
    [15] Abelló S, Bonilla A, Pérez-Ramírez J. Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching[J]. Applied Catalysis a General, 2009,364(1-2):191−198. doi: 10.1016/j.apcata.2009.05.055
    [16] Zhang P, Li S Q, Guo P H, et al. Synthesis of ZSM-5 microspheres made of nanocrystals from iron ore tailings by the solid phase conversion method[J]. Langmuir, 2020,36:6160−6168. doi: 10.1021/acs.langmuir.0c00570
    [17] Ren L M, Wu Q M, Yang C G, et al. Solvent-free synthesis of zeolites from solid raw materials[J]. J. Am. Chem. Soc., 2012,134:15173−15176. doi: 10.1021/ja3044954
    [18] Kamimura Y, Itabashi K J, Okubo T. Seed-assisted, OSDA-free synthesis of MTW-type zeolite and ‘‘Green MTW’’ from sodium aluminosilicate gel systems[J]. Microporous and Mesoporous Materials, 2012,147:149−156. doi: 10.1016/j.micromeso.2011.05.038
    [19] Zhang C Q, Li S Q, Bao S C. Sustainable synthesis of ZSM-5 zeolite from rice husk ash without addition of solvents[J]. Waste and Biomass Valorization, 2019,10:2825−2835. doi: 10.1007/s12649-018-0356-0
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  26
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-16
  • 刊出日期:  2023-04-30

目录

    /

    返回文章
    返回