留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛矿渣-磷石膏复合制备超硫酸盐水泥试验研究

董丽卿 蒋勇 王国敏 王宗义

董丽卿, 蒋勇, 王国敏, 王宗义. 钛矿渣-磷石膏复合制备超硫酸盐水泥试验研究[J]. 钢铁钒钛, 2023, 44(2): 124-131. doi: 10.7513/j.issn.1004-7638.2023.02.018
引用本文: 董丽卿, 蒋勇, 王国敏, 王宗义. 钛矿渣-磷石膏复合制备超硫酸盐水泥试验研究[J]. 钢铁钒钛, 2023, 44(2): 124-131. doi: 10.7513/j.issn.1004-7638.2023.02.018
Dong Liqing, Jiang Yong, Wang Guomin, Wang Zongyi. Study on preparation of super sulfate cement by titanium slag and phosphogypsum[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 124-131. doi: 10.7513/j.issn.1004-7638.2023.02.018
Citation: Dong Liqing, Jiang Yong, Wang Guomin, Wang Zongyi. Study on preparation of super sulfate cement by titanium slag and phosphogypsum[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 124-131. doi: 10.7513/j.issn.1004-7638.2023.02.018

钛矿渣-磷石膏复合制备超硫酸盐水泥试验研究

doi: 10.7513/j.issn.1004-7638.2023.02.018
基金项目: 四川省功能复合材料产教融合示范基地建设项目;达州市玄武岩纤维产业研究院开放基金项目;绵阳职业技术学院自然科学重点项目(MZ22ZD02、MZ22ZD01)。
详细信息
    作者简介:

    董丽卿,女,1984年出生,四川绵阳人,硕士,讲师,主要从事新型建筑材料和工业固废利用研究,E-mail:123862036@qq.com

    通讯作者:

    蒋勇,男,1988年出生,四川南充人,博士,讲师,主要从事工业固废处理和化学外加剂研发,E-mail:jiangyong7586@163.com

  • 中图分类号: X757

Study on preparation of super sulfate cement by titanium slag and phosphogypsum

  • 摘要: 采用磷石膏、钛矿渣、熟料和硅酸钠配制了10组超硫酸盐水泥,对基体的抗压强度、水化放热、水化产物进行了研究,并对纤维增强后的抗折强度、拉伸强度和抗冲击强度进行测试。结果表明,熟料和钛矿渣均能有效提升超硫酸盐水泥的抗压强度,并能促进水化放热和二次水化反应。较优的水泥配比为磷石膏∶钛矿渣∶熟料∶硅酸钠=25∶60∶13∶2,此时抗压强度达到42.1 MPa。玄武岩纤维可显著提高超硫酸盐水泥的抗折强度和抗冲击强度,表现为:当掺入0.3% 6 mm纤维时,试件的抗折强度提升了27.0%;掺入0.6%的12 mm纤维时,抗冲击强度提高了120.3%。拉伸试验结果表明,玄武岩纤维对提升水泥的极限拉伸强度不利,但能提高水泥的拉伸应变能力。
  • 图  1  原材料的XRD分析结果

    Figure  1.  XRD analysis results of raw materials

    图  2  抗压强度测试结果

    Figure  2.  Compressive strength test results

    图  3  PS组水化放热情况

    Figure  3.  Hydration heat release in PS group

    图  4  PK组水化放热情况

    Figure  4.  Hydration heat release in PK group

    图  5  养护56 d样品的XRD分析图谱

    Figure  5.  XRD analysis pattern of the sample for curing 56 days

    图  6  养护56 d样品的SEM形貌

    Figure  6.  SEM images of different samples for curing 56 days

    图  7  抗折强度测试结果

    Figure  7.  Flexural strength test results

    图  8  拉伸强度测试结果

    Figure  8.  Tensile strength test results

    图  9  典型的应力-应变曲线

    Figure  9.  Typical stress-strain curves

    图  10  抗冲击强度测试结果

    Figure  10.  Impact strength test results

    表  1  原材料的XRF分析结果

    Table  1.   XRF analysis results of raw materials %

    成分CaOSiO2TiO2Al2O3MgOFe2O3SO3P2O5Na2OK2OMnO
    钛矿渣27.0628.7616.6912.577.133.222.310.050.810.750.45
    磷石膏36.4810.480.221.520.370.9546.831.970.090.27
    熟料68.1718.540.674.441.403.571.680.120.310.830.10
    下载: 导出CSV

    表  2  试验配合比

    Table  2.   Experimental mix proportion %

    组号磷石膏钛矿渣熟料硅酸钠水灰比
    PS15903245
    PS225703245
    PS345503245
    PS465303245
    PS585103245
    PK125703245
    PK225658245
    PK3256013245
    PK4255518245
    PK5255023245
    下载: 导出CSV
  • [1] Liu Shuhua, Wang Lu, Yu Baoying. Review on hydration mechanism and engineering application of supersulfate cement[J]. China Concrete, 2018,(10):46−51. (刘数华, 王露, 余保英. 超硫酸盐水泥的水化机理及工程应用综述[J]. 混凝土世界, 2018,(10):46−51. doi: 10.3969/j.issn.1674-7011.2018.10.008
    [2] Dvorkin L, Nihaeva L. Modified supersulfated cements[J]. Zaštita Materijala, 2021,62(4):340−348. doi: 10.5937/zasmat2104340D
    [3] Wang Liang, Zhou Yang, Peng Zechuan, et al. Study on the strength and carbonation resistance of desulfurized gypsum-based supersulfate cement concrete[J]. China Concrete and Cement Products, 2022,(3):85−90. (王亮, 周扬, 彭泽川, 等. 脱硫石膏基超硫酸盐水泥混凝土强度和抗碳化性能研究[J]. 混凝土与水泥制品, 2022,(3):85−90.
    [4] Wu Q, Xue Q, Yu Z. Research status of super sulfate cement[J]. Journal of Cleaner Production, 2021,294:126228. doi: 10.1016/j.jclepro.2021.126228
    [5] Chen Yu, Ji Junrong, Zhou Zhou, et al. Influencing factors and enhancement methods of early strength of supersulfated cement[J]. Bulletin of the Chinese Ceramic Society, 2021,40(5):1413−1419. (陈宇, 季军荣, 周洲, 等. 超硫酸盐水泥早期强度影响因素及提高途径[J]. 硅酸盐通报, 2021,40(5):1413−1419. doi: 10.16552/j.cnki.issn1001-1625.2021.05.001
    [6] Chen Yitao, Ge Xuexiang, Li Jie, et al. Preparation and mechanical properties of concrete of titanium gypsum persulfate cement & coal gangue[J]. Journal of Anhui University of Technology(Natural Science), 2021,38(4):373−378. (陈儀涛, 葛雪祥, 李杰, 等. 钛石膏基过硫酸盐水泥煤矸石混凝土的制备及力学性能[J]. 安徽工业大学学报(自然科学版), 2021,38(4):373−378.
    [7] Gao Y X, Xiang J Y, Wang J, et al. Study on mechanical properties of microbead modified super sulfate cement concrete[C]//The 10th International Symposium on High Performance Concrete-Innovation & Utilization. Beijing: Trans Tech Publications Ltd, 2014.
    [8] Nguyen H A, Chang T P, Chen C T, et al. Engineering and creep performances of green super-sulfated cement concretes using circulating fluidized bed combustion fly ash[J]. Construction and Building Materials, 2022,346:128274. doi: 10.1016/j.conbuildmat.2022.128274
    [9] Yu B Y, Wang J, Gao Y X, et al. Studies on key technology and toughness of super sulfate cement-based compound materials[J]. Applied Mechanics and Materials, 2014,665:151−154. doi: 10.4028/www.scientific.net/AMM.665.151
    [10] Wu Shuanglei, Ji Junrong, Zhou Weijie, et al. Effect and mechanism of sodium lactate on strength of supersulfate cement[J]. Bulletin of the Chinese Ceramic Society, 2022,41(9):3008−3015. (武双磊, 季军荣, 周威杰, 等. 乳酸钠对超硫酸盐水泥强度的影响及作用机理[J]. 硅酸盐通报, 2022,41(9):3008−3015. doi: 10.3969/j.issn.1001-1625.2022.9.gsytb202209004
    [11] Du Huihui, Ni Wen, Gao Guangjun, et al. Research on application of vanadium-titanium slag in fabricated precast concrete slab[J]. New Building Materials, 2021,48(10):172−177. (杜惠惠, 倪文, 高广军, 等. 钒钛矿渣在装配式预制板材中的应用研究[J]. 新型建筑材料, 2021,48(10):172−177. doi: 10.3969/j.issn.1001-702X.2021.10.037
    [12] Wang Shuai, Lv Shuzhen, Zhao Jie, et al. Preparation of mineral admixture for concrete with high titanium slag[J]. Journal of Southwest University of Science and Technology, 2021,36(1):28−34. (王帅, 吕淑珍, 赵杰, 等. 高钛矿渣制备混凝土用矿物掺合料研究[J]. 西南科技大学学报, 2021,36(1):28−34. doi: 10.3969/j.issn.1671-8755.2021.01.005
    [13] Liu Shuxian, Su Yan, Yang Min, et al. Experimental study on preparation of the steel slag and slag composite cementitious material and its gelling activity inspiration[J]. Metal Mine, 2022,(11):252−258. (刘淑贤, 苏严, 杨敏, 等. 钢渣-矿渣复合胶凝材料的制备及胶凝活性激发试验研究[J]. 金属矿山, 2022,(11):252−258.
    [14] Zhou Miaoqin. Tao Xue. Liao Xun, et al. Production and discharge of phosphogypsum and research progress on its resource utilization[J]. Yunnan Chemical Technology, 2022,49(12):4−8. (周妙琴, 陶雪, 廖迅, 等. 磷石膏产排情况及资源化利用研究进展[J]. 云南化工, 2022,49(12):4−8. doi: 10.3969/j.issn.1004-275X.2022.12.02
    [15] Rutherford P M, Dudas M J, Samek R A. Environmental impacts of phosphogypsum[J]. Science of the Total Environment, 1994,149(1-2):1−38. doi: 10.1016/0048-9697(94)90002-7
    [16] Chernysh Y, Yakhnenko O, Chubur V, et al. Phosphogypsum recycling: a review of environmental issues, current trends, and prospects[J]. Applied Sciences, 2021,11(4):1575. doi: 10.3390/app11041575
    [17] Jiang Yong, Li Liangjing, Li Wei, et al. Properties of calcined phosphogypsum composite modified cementitious materials[J]. Sichuan Building Materials, 2021,47(6):1−3. (蒋勇, 李靓婧, 李伟, 等. 煅烧磷石膏复合改性胶凝材料的性能[J]. 四川建材, 2021,47(6):1−3. doi: 10.3969/j.issn.1672-4011.2021.06.001
    [18] Wu Lei, Zhao Zhiman, Zhu Weimin, et al. Effect of chopped basalt fiber on the bending strength of phosphogypsum[J]. Non-Metallic Mines, 2017,40(6):9−11. (吴磊, 赵志曼, 朱伟民, 等. 短切玄武岩纤维对磷石膏抗折强度影响研究[J]. 非金属矿, 2017,40(6):9−11. doi: 10.3969/j.issn.1000-8098.2017.06.003
    [19] Li Nianhua, Liu Yuankun, Cui Zhenghao, et al. Properties and applications of basalt fibers[J]. Synthetic Fiber in China, 2022,51(12):16−23. (李年华, 刘元坤, 崔正浩, 等. 玄武岩纤维的性能及其应用[J]. 合成纤维, 2022,51(12):16−23.
    [20] Victor C Li. Engineered cementitious composites (ECC)[M]. Springer, 2019: 43-44.
    [21] Curosu I, Mechtcherine V, Forni D, et al. Performance of various strain hardening cement-based composites (SHCC) subject to uniaxial impact tensile loading[J]. Cement and Concrete Reseach, 2017,(102):16−28.
    [22] 陈鹏飞. 玄武岩纤维和聚丙烯纤维混凝土抗冲击性能研究与数值分析[D]. 青岛: 青岛理工大学, 2021.

    Chen Pengfei. Research and numerical analysis on impact resistance of basalt fiber and polypropylene fiber reinforced concrete[D]. Qingdao: Qingdao University of Technology, 2021.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  120
  • HTML全文浏览量:  39
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-29
  • 刊出日期:  2023-04-30

目录

    /

    返回文章
    返回