中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

板坯连铸过程热收缩变形行为研究

吴晨辉 吴国荣 张敏 谢鑫 李阳 曾建华

吴晨辉, 吴国荣, 张敏, 谢鑫, 李阳, 曾建华. 板坯连铸过程热收缩变形行为研究[J]. 钢铁钒钛, 2023, 44(2): 141-146. doi: 10.7513/j.issn.1004-7638.2023.02.020
引用本文: 吴晨辉, 吴国荣, 张敏, 谢鑫, 李阳, 曾建华. 板坯连铸过程热收缩变形行为研究[J]. 钢铁钒钛, 2023, 44(2): 141-146. doi: 10.7513/j.issn.1004-7638.2023.02.020
Wu Chenhui, Wu Guorong, Zhang Min, Xie Xin, Li Yang, Zeng Jianhua. Investigation on thermal shrinkage deformation of the continuously cast slab[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 141-146. doi: 10.7513/j.issn.1004-7638.2023.02.020
Citation: Wu Chenhui, Wu Guorong, Zhang Min, Xie Xin, Li Yang, Zeng Jianhua. Investigation on thermal shrinkage deformation of the continuously cast slab[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 141-146. doi: 10.7513/j.issn.1004-7638.2023.02.020

板坯连铸过程热收缩变形行为研究

doi: 10.7513/j.issn.1004-7638.2023.02.020
详细信息
    作者简介:

    吴晨辉,1985年出生,男,河北石家庄人,博士,工程师,通讯作者,主要从事钢铁冶金过程精炼、连铸方向研究, E-mail: wch_neu@126.com

    通讯作者:

    吴晨辉,1985年出生,男,河北石家庄人,博士,工程师,通讯作者,主要从事钢铁冶金过程精炼、连铸方向研究, E-mail: wch_neu@126.com

  • 中图分类号: TF777

Investigation on thermal shrinkage deformation of the continuously cast slab

  • 摘要: 连铸过程铸坯已凝固坯壳因冷却降温发生热收缩变形,该变形是制定连铸机基础收缩辊缝的重要依据。以板坯连铸过程为对象,建立了三维热-力耦合有限元模型,揭示了板坯连铸过程已凝固坯壳沿厚度方向热收缩变形规律。结果表明,浇铸过程中坯壳热收缩变形不断增大,在凝固终点位置热收缩出现短时加速增大趋势,铸机末端位置坯壳宽向中心位置热收缩约8 mm;板坯宽向不同位置热收缩变形存在较明显差异,由宽向中心至铸坯角部方向,已凝固坯壳厚度方向热收缩变形呈先减小后增大趋势。随着拉速增加,相同铸流位置热收缩变形减小,拉速增加0.1 m/min,铸机末端位置的坯壳宽向中心与宽向1/8位置热收缩减小约1.2 mm。研究结果为优化铸机基础收缩辊缝,改善因不合理基础辊缝导致的铸坯内部质量问题提供了数据支撑。
  • 图  1  宽厚板坯热收缩三维热/力耦合有限元模型

    Figure  1.  3D thermal-mechenical coupled model for thermal shrinkage of the wide-thick slab

    图  2  不同温度钢的线性膨胀系数及瞬时线性膨胀系数

    Figure  2.  The theoretically calculated thermal linear expansion coefficient and transient thermal linear expansion coefficient

    图  3  二冷5区至8区喷嘴布置参数

    Figure  3.  The nozzles layout in Zone 5~8

    图  4  二冷5区至8区范围内实测宽向水流密度

    Figure  4.  The measured water flux distribution along the slab width direction in Zone 5~8

    图  5  温度计算值与实测值对比

    Figure  5.  Comparison between the measured and the predicted temperatures

    图  6  二冷8区末铸坯横断面两相区形貌及不同特征点位置

    Figure  6.  Profile of the unsolidified region at the end of zone 8 and the distribution of the typical points

    图  7  特征点位置热收缩

    Figure  7.  Thermal shrinkage distribution of the typical points

    图  8  (a)铸坯热收缩沿宽向分布与(b)横断面温度场云图

    Figure  8.  (a) Thermal shrinkage distribution along the slab width direction and (b) the corresponding temperature field of the slab transverse section at the end of zone 8 and the caster

    图  9  不同拉速下铸坯各特征点热收缩规律

    Figure  9.  Thermal shrinkage variation with different casting speeds at the typical points

    表  1  冷却分区参数

    Table  1.   Parameters of the cooling zones

    冷却分区起始铸流位置/m结束铸流位置/m
    结晶器00.80
    二冷1区0.801.04
    二冷2区1.041.60
    二冷3区1.602.71
    二冷4区2.714.26
    二冷5区4.266.18
    二冷6区6.1810.02
    二冷7区10.0213.86
    二冷8区13.8620.49
    二冷9区20.4930.33
    下载: 导出CSV

    表  2  模拟参数

    Table  2.   Simulation paraeters

    Q345主要成分(w/ %)液相线温度/℃固相线温度/℃板坯厚度/mm板坯宽度/mm过热度/oC拉速/(m.min−1)
    CSiMnPS
    0.170.311.50.0140.0111517.71467.52801600,1800,2000300.7,0.8,0.9
    下载: 导出CSV
  • [1] Li C S, Thomas B G. Thermomechanical finite-element model of shell behavior in continuous casting of steel[J]. Metallurgical and Materials Transactions B, 2004,35(6):1151−1172. doi: 10.1007/s11663-004-0071-z
    [2] Song J X, Cai Z Z, Piao F Y, et al. Heat transfer and deformation behavior of shell solidification in wide and thick slab continuous casting mold[J]. Journal of Iron and Steel Research International, 2014,21(S1):1−9.
    [3] Wang T M, Cai S W, Xu J, et al. Continous casting mould for square billet optimized by solidification shrinkage simulation[J]. Ironmaking and Steelmaking, 2010,37(5):341−346. doi: 10.1179/030192310X12683045806026
    [4] Cai Z Z, Zhu M Y. Thermo-mechanical behavior of peritectic steel solidifying in slab continuous casting mold and a new mold taper design[J]. ISIJ International, 2013,53(10):1818−1827. doi: 10.2355/isijinternational.53.1818
    [5] Zhu L G, Kumar R V. Modelling of steel shrinkage and optimisation of mould taper for high speed continuous casting[J]. Ironmaking and Steelmaking, 2007,34(1):76−82. doi: 10.1179/174328106X118152
    [6] Wang B, Walker B N, Samarasekera I V. Shell growth, surface quality and mould taper design for high-speed casting of stainless steel billets[J]. Canadian Metallurgical Quarterly, 2000,39(4):441−454. doi: 10.1179/cmq.2000.39.4.441
    [7] Wang Weihua, Liu Yang, Wang Wenjun, et al. Numerical simulation of slab shell solidification shrinkage in continuous casting mould[J]. Research on Iron & Steel, 2014,42(6):26−29. (王卫华, 刘洋, 王文军, 等. 板坯连铸结晶器内坯壳凝固收缩的数值模拟[J]. 钢铁研究, 2014,42(6):26−29.
    [8] Qian Hongzhi, Du Chenwei, Hu Pijun, et al. Free thermal shrinkage behavior during the solidification process in slab casters[J]. Journal of Iron and Steel Research, 2016,28(8):27−32. (钱宏智, 杜辰伟, 胡丕俊, 等. 板坯连铸凝固过程中的自由热收缩行为[J]. 钢铁研究学报, 2016,28(8):27−32. doi: 10.13228/j.boyuan.issn1001-0963.20150263
    [9] Chen Hongzhi, Chang Yunhe, Zhang Jiaquan, et al. Linear contraction and the related basic roller gap for stainless slab casting[J]. China Metallurgy, 2012,22(2):25−30. (陈洪智, 常运合, 张家泉, 等. 不锈钢板坯连铸自由线收缩与辊缝研究[J]. 中国冶金, 2012,22(2):25−30. doi: 10.13228/j.boyuan.issn1006-9356.2012.02.007
    [10] Ma Changwen, Chen Songlin, Zheng Tianran, et al. Study on roll gap of slab caster based on solidification shrinkage[J]. Iron and Steel, 2008,43(3):44−50. (马长文, 陈松林, 郑天然, 等. 基于凝固收缩的板坯铸机辊缝研究[J]. 钢铁, 2008,43(3):44−50. doi: 10.3321/j.issn:0449-749X.2008.03.010
    [11] Sun Ligen, Li Xiaofei, Zhu Liguang, et al. Optimized design of roll gap for 65Mn slab caster based on solidification shrinkage[J]. Foundry Technology, 2017,38(5):1150−1154. (孙立根, 李晓斐, 朱立光, 等. 基于凝固收缩的65Mn板坯铸机辊缝优化设计[J]. 铸造技术, 2017,38(5):1150−1154.
    [12] Lin Qiyong, Zhu Miaoyong. Finite element modeling of nature thermal shrinkage for continuous casting slab[J]. Journal of Northeastern University(Natural Science), 2006,27(S2):8−10. (林启勇, 朱苗勇. 连铸板坯自然热收缩行为有限元模拟[J]. 东北大学学报(自然科学版), 2006,27(S2):8−10.
    [13] Hebi Y, Man Y, Huiying Z, et al. 3D stress model with friction in and of mould for round billet continuous casting[J]. ISIJ International, 2006,46(4):546−552. doi: 10.2355/isijinternational.46.546
    [14] Kim K, Yeo T J, Oh K H, et al. Effect of carbon and sulfur in continuously cast strand on longitudinal surface cracks[J]. ISIJ International, 1996,36(3):284−289. doi: 10.2355/isijinternational.36.284
    [15] 蔡兆镇. 板坯连铸结晶器内凝固坯壳的热/力学行为研究[D]. 沈阳: 东北大学, 2011.

    Cai Zhaozhen. Thermal and mechanical behavior of solidifying shell in slab continuous casting mold[D]. Shenyang: Northeastern University, 2011.
    [16] Wu C H, Ji C, Zhu M Y. Numerical simulation of bulging deformation for wide-thick slab under uneven cooling conditions[J]. Metallurgical and Materials Transactions B, 2018,39(3):1346−1359.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  292
  • HTML全文浏览量:  72
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-25
  • 刊出日期:  2023-04-30

目录

    /

    返回文章
    返回