留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

板坯连铸过程热收缩变形行为研究

吴晨辉 吴国荣 张敏 谢鑫 李阳 曾建华

吴晨辉, 吴国荣, 张敏, 谢鑫, 李阳, 曾建华. 板坯连铸过程热收缩变形行为研究[J]. 钢铁钒钛, 2023, 44(2): 141-146. doi: 10.7513/j.issn.1004-7638.2023.02.020
引用本文: 吴晨辉, 吴国荣, 张敏, 谢鑫, 李阳, 曾建华. 板坯连铸过程热收缩变形行为研究[J]. 钢铁钒钛, 2023, 44(2): 141-146. doi: 10.7513/j.issn.1004-7638.2023.02.020
Wu Chenhui, Wu Guorong, Zhang Min, Xie Xin, Li Yang, Zeng Jianhua. Investigation on thermal shrinkage deformation of the continuously cast slab[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 141-146. doi: 10.7513/j.issn.1004-7638.2023.02.020
Citation: Wu Chenhui, Wu Guorong, Zhang Min, Xie Xin, Li Yang, Zeng Jianhua. Investigation on thermal shrinkage deformation of the continuously cast slab[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 141-146. doi: 10.7513/j.issn.1004-7638.2023.02.020

板坯连铸过程热收缩变形行为研究

doi: 10.7513/j.issn.1004-7638.2023.02.020
详细信息
    作者简介:

    吴晨辉,1985年出生,男,河北石家庄人,博士,工程师,通讯作者,主要从事钢铁冶金过程精炼、连铸方向研究, E-mail: wch_neu@126.com

    通讯作者:

    吴晨辉,1985年出生,男,河北石家庄人,博士,工程师,通讯作者,主要从事钢铁冶金过程精炼、连铸方向研究, E-mail: wch_neu@126.com

  • 中图分类号: TF777

Investigation on thermal shrinkage deformation of the continuously cast slab

  • 摘要: 连铸过程铸坯已凝固坯壳因冷却降温发生热收缩变形,该变形是制定连铸机基础收缩辊缝的重要依据。以板坯连铸过程为对象,建立了三维热-力耦合有限元模型,揭示了板坯连铸过程已凝固坯壳沿厚度方向热收缩变形规律。结果表明,浇铸过程中坯壳热收缩变形不断增大,在凝固终点位置热收缩出现短时加速增大趋势,铸机末端位置坯壳宽向中心位置热收缩约8 mm;板坯宽向不同位置热收缩变形存在较明显差异,由宽向中心至铸坯角部方向,已凝固坯壳厚度方向热收缩变形呈先减小后增大趋势。随着拉速增加,相同铸流位置热收缩变形减小,拉速增加0.1 m/min,铸机末端位置的坯壳宽向中心与宽向1/8位置热收缩减小约1.2 mm。研究结果为优化铸机基础收缩辊缝,改善因不合理基础辊缝导致的铸坯内部质量问题提供了数据支撑。
  • 图  1  宽厚板坯热收缩三维热/力耦合有限元模型

    Figure  1.  3D thermal-mechenical coupled model for thermal shrinkage of the wide-thick slab

    图  2  不同温度钢的线性膨胀系数及瞬时线性膨胀系数

    Figure  2.  The theoretically calculated thermal linear expansion coefficient and transient thermal linear expansion coefficient

    图  3  二冷5区至8区喷嘴布置参数

    Figure  3.  The nozzles layout in Zone 5~8

    图  4  二冷5区至8区范围内实测宽向水流密度

    Figure  4.  The measured water flux distribution along the slab width direction in Zone 5~8

    图  5  温度计算值与实测值对比

    Figure  5.  Comparison between the measured and the predicted temperatures

    图  6  二冷8区末铸坯横断面两相区形貌及不同特征点位置

    Figure  6.  Profile of the unsolidified region at the end of zone 8 and the distribution of the typical points

    图  7  特征点位置热收缩

    Figure  7.  Thermal shrinkage distribution of the typical points

    图  8  (a)铸坯热收缩沿宽向分布与(b)横断面温度场云图

    Figure  8.  (a) Thermal shrinkage distribution along the slab width direction and (b) the corresponding temperature field of the slab transverse section at the end of zone 8 and the caster

    图  9  不同拉速下铸坯各特征点热收缩规律

    Figure  9.  Thermal shrinkage variation with different casting speeds at the typical points

    表  1  冷却分区参数

    Table  1.   Parameters of the cooling zones

    冷却分区起始铸流位置/m结束铸流位置/m
    结晶器00.80
    二冷1区0.801.04
    二冷2区1.041.60
    二冷3区1.602.71
    二冷4区2.714.26
    二冷5区4.266.18
    二冷6区6.1810.02
    二冷7区10.0213.86
    二冷8区13.8620.49
    二冷9区20.4930.33
    下载: 导出CSV

    表  2  模拟参数

    Table  2.   Simulation paraeters

    Q345主要成分(w/ %)液相线温度/℃固相线温度/℃板坯厚度/mm板坯宽度/mm过热度/oC拉速/(m.min−1)
    CSiMnPS
    0.170.311.50.0140.0111517.71467.52801600,1800,2000300.7,0.8,0.9
    下载: 导出CSV
  • [1] Li C S, Thomas B G. Thermomechanical finite-element model of shell behavior in continuous casting of steel[J]. Metallurgical and Materials Transactions B, 2004,35(6):1151−1172. doi: 10.1007/s11663-004-0071-z
    [2] Song J X, Cai Z Z, Piao F Y, et al. Heat transfer and deformation behavior of shell solidification in wide and thick slab continuous casting mold[J]. Journal of Iron and Steel Research International, 2014,21(S1):1−9.
    [3] Wang T M, Cai S W, Xu J, et al. Continous casting mould for square billet optimized by solidification shrinkage simulation[J]. Ironmaking and Steelmaking, 2010,37(5):341−346. doi: 10.1179/030192310X12683045806026
    [4] Cai Z Z, Zhu M Y. Thermo-mechanical behavior of peritectic steel solidifying in slab continuous casting mold and a new mold taper design[J]. ISIJ International, 2013,53(10):1818−1827. doi: 10.2355/isijinternational.53.1818
    [5] Zhu L G, Kumar R V. Modelling of steel shrinkage and optimisation of mould taper for high speed continuous casting[J]. Ironmaking and Steelmaking, 2007,34(1):76−82. doi: 10.1179/174328106X118152
    [6] Wang B, Walker B N, Samarasekera I V. Shell growth, surface quality and mould taper design for high-speed casting of stainless steel billets[J]. Canadian Metallurgical Quarterly, 2000,39(4):441−454. doi: 10.1179/cmq.2000.39.4.441
    [7] Wang Weihua, Liu Yang, Wang Wenjun, et al. Numerical simulation of slab shell solidification shrinkage in continuous casting mould[J]. Research on Iron & Steel, 2014,42(6):26−29. (王卫华, 刘洋, 王文军, 等. 板坯连铸结晶器内坯壳凝固收缩的数值模拟[J]. 钢铁研究, 2014,42(6):26−29.
    [8] Qian Hongzhi, Du Chenwei, Hu Pijun, et al. Free thermal shrinkage behavior during the solidification process in slab casters[J]. Journal of Iron and Steel Research, 2016,28(8):27−32. (钱宏智, 杜辰伟, 胡丕俊, 等. 板坯连铸凝固过程中的自由热收缩行为[J]. 钢铁研究学报, 2016,28(8):27−32. doi: 10.13228/j.boyuan.issn1001-0963.20150263
    [9] Chen Hongzhi, Chang Yunhe, Zhang Jiaquan, et al. Linear contraction and the related basic roller gap for stainless slab casting[J]. China Metallurgy, 2012,22(2):25−30. (陈洪智, 常运合, 张家泉, 等. 不锈钢板坯连铸自由线收缩与辊缝研究[J]. 中国冶金, 2012,22(2):25−30. doi: 10.13228/j.boyuan.issn1006-9356.2012.02.007
    [10] Ma Changwen, Chen Songlin, Zheng Tianran, et al. Study on roll gap of slab caster based on solidification shrinkage[J]. Iron and Steel, 2008,43(3):44−50. (马长文, 陈松林, 郑天然, 等. 基于凝固收缩的板坯铸机辊缝研究[J]. 钢铁, 2008,43(3):44−50. doi: 10.3321/j.issn:0449-749X.2008.03.010
    [11] Sun Ligen, Li Xiaofei, Zhu Liguang, et al. Optimized design of roll gap for 65Mn slab caster based on solidification shrinkage[J]. Foundry Technology, 2017,38(5):1150−1154. (孙立根, 李晓斐, 朱立光, 等. 基于凝固收缩的65Mn板坯铸机辊缝优化设计[J]. 铸造技术, 2017,38(5):1150−1154.
    [12] Lin Qiyong, Zhu Miaoyong. Finite element modeling of nature thermal shrinkage for continuous casting slab[J]. Journal of Northeastern University(Natural Science), 2006,27(S2):8−10. (林启勇, 朱苗勇. 连铸板坯自然热收缩行为有限元模拟[J]. 东北大学学报(自然科学版), 2006,27(S2):8−10.
    [13] Hebi Y, Man Y, Huiying Z, et al. 3D stress model with friction in and of mould for round billet continuous casting[J]. ISIJ International, 2006,46(4):546−552. doi: 10.2355/isijinternational.46.546
    [14] Kim K, Yeo T J, Oh K H, et al. Effect of carbon and sulfur in continuously cast strand on longitudinal surface cracks[J]. ISIJ International, 1996,36(3):284−289. doi: 10.2355/isijinternational.36.284
    [15] 蔡兆镇. 板坯连铸结晶器内凝固坯壳的热/力学行为研究[D]. 沈阳: 东北大学, 2011.

    Cai Zhaozhen. Thermal and mechanical behavior of solidifying shell in slab continuous casting mold[D]. Shenyang: Northeastern University, 2011.
    [16] Wu C H, Ji C, Zhu M Y. Numerical simulation of bulging deformation for wide-thick slab under uneven cooling conditions[J]. Metallurgical and Materials Transactions B, 2018,39(3):1346−1359.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  87
  • HTML全文浏览量:  24
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-25
  • 刊出日期:  2023-04-30

目录

    /

    返回文章
    返回