留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磷元素对Fe-Mn阻尼合金性能影响研究

李江文 李大航 李琳 侯华兴 赵刚

李江文, 李大航, 李琳, 侯华兴, 赵刚. 磷元素对Fe-Mn阻尼合金性能影响研究[J]. 钢铁钒钛, 2023, 44(2): 147-152. doi: 10.7513/j.issn.1004-7638.2023.02.021
引用本文: 李江文, 李大航, 李琳, 侯华兴, 赵刚. 磷元素对Fe-Mn阻尼合金性能影响研究[J]. 钢铁钒钛, 2023, 44(2): 147-152. doi: 10.7513/j.issn.1004-7638.2023.02.021
Li Jiangwen, Li Dahang, Li Lin, Hou Huaxing, Zhao Gang. Influence of phosphorus on the properties of Fe-Mn damping alloy[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 147-152. doi: 10.7513/j.issn.1004-7638.2023.02.021
Citation: Li Jiangwen, Li Dahang, Li Lin, Hou Huaxing, Zhao Gang. Influence of phosphorus on the properties of Fe-Mn damping alloy[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 147-152. doi: 10.7513/j.issn.1004-7638.2023.02.021

磷元素对Fe-Mn阻尼合金性能影响研究

doi: 10.7513/j.issn.1004-7638.2023.02.021
详细信息
    作者简介:

    李江文,1995年出生,男,江西南昌人,硕士研究生,主要从事高性能高锰阻尼合金开发及组织性能调控,E-mail:741532272@qq.com

  • 中图分类号: TF642,TB34

Influence of phosphorus on the properties of Fe-Mn damping alloy

  • 摘要: Fe-Mn基阻尼合金是近些年来发现的一种新型金属阻尼材料。以Fe-Mn基阻尼合金为研究对象,对经不同固溶温度(800、900、1000 ℃)处理后的Fe-Mn、Fe-Mn-P阻尼合金的力学性能、耐蚀性能、阻尼性能进行了测试,利用EBSD进行了显微组织结构表征。结果表明:磷元素添加提高了阻尼合金的屈服强度,有利于提高合金的耐腐蚀性能,但极大地恶化了阻尼合金的低温韧性,降低了阻尼合金的阻尼性能。在800 ℃固溶状态下,Fe-Mn-P合金阻尼性能最佳,随着固溶温度的升高,Fe-Mn-P阻尼合金强度降低,阻尼性能降低;ε/ε和ε/γ界面密度是影响Fe-Mn-P阻尼合金阻尼性能的重要因素。
  • 图  1  Fe-Mn-P阻尼合金平衡相图

    Figure  1.  Equilibrium phase diagram of Fe-Mn-P damping alloy

    图  2  经不同温度固溶处理后阻尼合金的EBSD-BC图

    Figure  2.  EBSD-BC images of damping alloys after solution treatment at different temperatures

    图  3  经不同温度固溶处理后阻尼合金的EBSD-Phase图

    Figure  3.  EBSD-phase images of damping alloys after solution treatment at different temperatures

    图  4  经不同温度固溶处理后Fe-Mn-P阻尼合金的界面密度

    Figure  4.  Interfacial density of Fe-Mn-P damping alloy after solution treatment at different temperatures

    图  5  经不同温度固溶处理后合金阻尼性能随应变振幅的变化

    Figure  5.  Variation of damping properties of alloys with strain amplitude after solution treatment at different temperatures

    图  6  阻尼合金在模拟工业大气环境中电化学腐蚀试验: (a)自腐蚀电位; (b)交流阻抗谱

    Figure  6.  Electrochemical corrosion test of damping alloy in simulated industrial atmosphere: (a) self-corrosion potential and (b) AC impedance spectra

    图  7  经不同固溶温度处理后Fe-Mn-P阻尼合金各相比例

    Figure  7.  Various phase ratios of Fe-Mn-P damping alloys treated at different solution temperatures

    表  1  试验用阻尼合金化学成分

    Table  1.   Chemical compositions of the experimental damping alloy %

    编号CMnPSFe
    Fe-Mn0.005015.890.00500.0055Bal.
    Fe-Mn-P0.008016.000.07900.0065Bal.
    下载: 导出CSV

    表  2  经不同固溶温度处理后阻尼合金力学性能

    Table  2.   Mechanical properties of damping alloys treated at different solution temperatures

    编号固溶温
    度/℃
    屈服强
    度/MPa
    抗拉强
    度/MPa
    断后伸长
    率/%
    AKV2
    (−20 ℃)/J
    Fe-Mn100035868552.0176
    Fe-Mn-P100038274048.516
    Fe-Mn-P90038374446.010
    Fe-Mn-P80039076146.010
    下载: 导出CSV
  • [1] Song G Y, Mo L. Summary of kinds and features of damping alloys[J]. Noise and Vibration Control, 2010,30(4):37−38.
    [2] Baik S H. High damping Fe-Mn martensitic alloys for engineering applications[J]. Nuclear Engineering & Design, 2000,198(3):241−252.
    [3] Kim Jung-Chul, Han Dong-Woon, Seung-Han Baik, et al. Effects of alloying elements on martensitic transformation behavior and damping capacity in Fe-17Mn alloy[J]. Materials Science and Engineering A, 2004,378:323−327. doi: 10.1016/j.msea.2003.11.075
    [4] Jee K K, Jang W Y, Baik S H, et al. Damping mechanism and application of Fe-Mn based alloys[J]. Materials Science & Engineering A, 1999,273:538−542.
    [5] Jun J H, Lee Y K, Choi C S. Damping mechanisms of Fe-Mn alloy with (γ+ɛ) dual phase structure[J]. Materials Science and Technology, 2000,16(4):389−392. doi: 10.1179/026708300101507974
    [6] Jun J H, Choi C S. The influence of Mn content on microstructure and damping capacity in Fe-(17~23)%Mn alloys[J]. Materials Science & Engineering A, 1998,252(1):133−138.
    [7] Huang S. Study on the damping mechanism of Fe-Mn alloy[J]. Rare Metal Materials and Engineering, 2007,36:683−687.
    [8] 黄姝珂, 李宁, 文玉华, 等. 运用位错运动理论分析Fe-Mn合金的减振机理[C]//第六届中国功能材料及其应用学术会议论文集(10). 武汉: 中国仪器仪表学会仪表功能材料学会, 2007.

    Huang Shuke, Li Ning, Wen Yuhua, et al. Study of damping mechanism of Fe-Mn alloy using dislocation-moving theory[C]//Proceedings of the 6th China Conference on Functional Materials and Their Application(10). Wuhan: Instrument Functional Materials Society of China Instrument and Control Society, 2007.
    [9] Wang Shihong, Li Jian, Chai Feng, et al. Influence of solution temperature on γ→ε transformation and damping capacity of Fe-19 Mn alloy[J]. Acta Metallurgica Sinica, 2020,56(9):10. (王世宏, 李健, 柴锋, 等. 固溶温度对Fe-19Mn合金的γ→ε相变和阻尼性能的影响[J]. 金属学报, 2020,56(9):10.
    [10] Kim J C, Han D W, Back J H, et al. Effects of Cr and Ni on damping capacity and corrosion resistance of Fe-17%Mn alloy[J]. Journal of the Korea Foundry Society, 2005,25(2):73−79.
    [11] Wen Y, Qian B, Wu B. Effects of Cr on stacking-fault energy and damping capacity of Fe-Mn[J]. Materials Science & Technology, 2017,33:1019−1025.
    [12] Yu Qian. Review and prospect of weathering steel[J]. Journal of Iron and Steel Research, 2007,19(11):4. (于千. 耐候钢发展现状及展望[J]. 钢铁研究学报, 2007,19(11):4. doi: 10.13228/j.boyuan.issn1001-0963.2007.11.001
    [13] 雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006.

    Yong Qilong. Second phase in steel materials[M]. Beijing: Metallurgical Industry Press, 2006.
    [14] Fu Guiqin, Zhu Miaoyong. Phosphorus segregation on steel grain boundary[J]. Ansteel Technology, 2006,(3):5. (付贵勤, 朱苗勇. 磷元素在钢中的晶界偏聚[J]. 鞍钢技术, 2006,(3):5. doi: 10.3969/j.issn.1006-4613.2006.03.002
    [15] Ma Zhizhen, Wan Lanfeng. Influence of hot rolling process on non-equilibrium grain boundary segregation of phosphorus by Gleeble thermal simulation[J]. Iron & Steel, 2016,51(2):5. (马植甄, 万兰凤. Gleeble模拟热轧工艺对磷非平衡晶界偏聚的影响[J]. 钢铁, 2016,51(2):5. doi: 10.13228/j.boyuan.issn0449-749x.20150161
    [16] Takayama S, Ogura T, Fu S C, et al. The calculation of transition temperature changes in steels due to temper embrittlement[J]. Metall. Trans., 1980,11(9):1513−1530. doi: 10.1007/BF02654515
    [17] Huang S K, Li N, Wen Y H, et al. Effect of Si and Cr on stacking fault probability and damping capacity of Fe-Mn alloy[J]. Materials Science & Engineering A, 2008,479(1-2):223−228.
    [18] Chang Wanshun, Chen Xuequn, Li Guomin. Research of the mechanism of phosphor segregation effects to the steel’s corrosion resistance[J]. Equipment Environment Engineering, 2004,(2):31−34. (常万顺, 陈学群, 李国民. 磷偏析对钢耐蚀性影响的机理[J]. 装备环境工程, 2004,(2):31−34. doi: 10.3969/j.issn.1672-9242.2004.05.008
    [19] Lee Y K, Jun J H, Choi C S. Damping capacity in Fe-Mn binary alloys[J]. Transactions of the Iron & Steel Institute of Japan, 1997,37(10):1023−1030.
    [20] Ma Ruzhang, Wang Shiliang. γ→ε Martensitic transformation in ferromanganese alloys[J]. Transactions of Metal Heat Treatment, 1982,(2):30−52. (马如璋, 王世亮. 铁锰合金中γ→ε马氏体相变[J]. 金属热处理学报, 1982,(2):30−52.
    [21] Shin S, Kwon M, Cho W, et al. The effect of grain size on the damping capacity of Fe-17%Mn[J]. Materials Science and Engineering:A, 2017,683:187−194. doi: 10.1016/j.msea.2016.10.079
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  33
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-06
  • 刊出日期:  2023-04-30

目录

    /

    返回文章
    返回