留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti-Nb微合金化高速护栏钢连续冷却组织转变规律研究

李焱祺 甘晓龙 刘亚军 王成 张卓宇

李焱祺, 甘晓龙, 刘亚军, 王成, 张卓宇. Ti-Nb微合金化高速护栏钢连续冷却组织转变规律研究[J]. 钢铁钒钛, 2023, 44(2): 153-159. doi: 10.7513/j.issn.1004-7638.2023.02.022
引用本文: 李焱祺, 甘晓龙, 刘亚军, 王成, 张卓宇. Ti-Nb微合金化高速护栏钢连续冷却组织转变规律研究[J]. 钢铁钒钛, 2023, 44(2): 153-159. doi: 10.7513/j.issn.1004-7638.2023.02.022
Li Yanqi, Gan Xiaolong, Liu Yajun, Wang Cheng, Zhang Zhuoyu. Study on microstructure transformation behavior of Ti-Nb microalloyed high-speed guardrail steel under continuous cooling[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 153-159. doi: 10.7513/j.issn.1004-7638.2023.02.022
Citation: Li Yanqi, Gan Xiaolong, Liu Yajun, Wang Cheng, Zhang Zhuoyu. Study on microstructure transformation behavior of Ti-Nb microalloyed high-speed guardrail steel under continuous cooling[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 153-159. doi: 10.7513/j.issn.1004-7638.2023.02.022

Ti-Nb微合金化高速护栏钢连续冷却组织转变规律研究

doi: 10.7513/j.issn.1004-7638.2023.02.022
基金项目: 国家自然科学基金面上项目(51874216)。
详细信息
    作者简介:

    李焱祺,1998年出生,男,湖北孝感人,硕士研究生,主要从事高强钢强化机理研究,E-mail:Liyanqi981110@163.com

    通讯作者:

    甘晓龙,1984年出生,男,湖北洪湖人,博士,副教授,主要从事高性能钢铁材料的开发及其强韧性机理研究,E-mail:ganxiaolong@wust.edu.cn

  • 中图分类号: TF76

Study on microstructure transformation behavior of Ti-Nb microalloyed high-speed guardrail steel under continuous cooling

  • 摘要: 利用热模拟试验机、OM、TEM等试验设备,研究了Ti-Nb微合金化高速护栏钢的连续冷却组织转变规律,建立了试验钢的CCT曲线。研究结果表明:当冷速为0.5 ℃/s时,试验钢中的奥氏体发生铁素体-珠光体相变;当冷速大于1 ℃/s时,开始发生贝氏体相变;当冷速为10~20 ℃/s时,既发生铁素体-贝氏体相变又发生马氏体相变;当冷速≥30 ℃/s时,发生贝氏体-马氏体的相变。随着冷速的增加,试验钢的硬度也随之增大。在不同冷速下钢中均存在(Ti, Nb)C析出物,且在钢中呈弥散分布,在低冷速条件下,钢中析出物的体积分数较大,尺寸较小,具有一定的析出强化效果。
  • 图  1  热模拟试验工艺

    Figure  1.  The process diagram of the thermal simulation experiment

    图  2  试验钢在不同冷速下的温度-膨胀量曲线

    Figure  2.  The temperature-expansion increment curve of the steel at different cooling rates

    图  3  试验钢在不同冷速下的金相显微组织

    Figure  3.  The metallographic microstructure of the steel at different cooling rates

    图  4  试验钢在0.5 ℃/s 和50 ℃/s冷速时的TEM形貌

    Figure  4.  The TEM images of the steel at the cooling rate of 0.5 ℃/s and 50 ℃/s

    (a) 0.5 ℃/s;(b) 50 ℃/s

    图  5  硬度-冷却速度曲线

    Figure  5.  The curve of hardness-cooling rate

    图  6  试验钢的CCT曲线

    Figure  6.  The CCT curve of the steel

    图  7  试验钢析出物体积分数随温度的变化

    Figure  7.  The variation of the volume fraction of precipitates in the steel with different temperature

    图  8  试验钢在0.5 ℃/s和50 ℃/s冷速时析出物的形貌和EDS形貌

    Figure  8.  The morphology and EDS images of precipitates in the steel at the cooling rate of 0.5 ℃/s and 50 ℃/s

    (a) 0.5 ℃/s;(b) 50 ℃/s

    表  1  试验钢的主要化学成分

    Table  1.   The target composition of the steel %

    CSiMnTiNbNCrSP
    0.050~0.0700.10~0.301.40~1.600.10~0.15≤0.01≤0.0050.30~0.50≤0.005≤0.010
    下载: 导出CSV

    表  2  试验钢不同冷却速度下的相变温度和组织类型

    Table  2.   The transformation points and microstructures of the steel at different cooling rates

    冷却速率/(℃·s−1转变温度/℃组织
    A→F+PA→F+P+BA→F+BA→F+B+MA→B+M
    开始结束开始结束开始结束开始结束开始结束
    0.5802650F+P
    1792589F+P+B
    5760513F +B
    10696509F+B+M
    20699466F+B+M
    30646412B+M
    50624395B+M
    下载: 导出CSV
  • [1] Shi Zhongran, Chai Xiyang, Chai Feng, et al. The mechanism of intragranular ferrite formed on Ti-rich(Ti, V) (C, N) precipitates in the coarse heat affected zone of a V-N-Ti microalloyed steel[J]. Materials Letters, 2016,175(14):266−270.
    [2] Xu Yang, Zhang Weina, Sun Mingxue, et al. The blocking effects of interphase precipitation on dislocations’ movement in Nb/Ti micro-alloyed steels[J]. Materials Letters, 2015,139(15):177−181.
    [3] Chen Jun, Lv Mengyang, Tang Shuai, et al. Microstructure, mechanical proper-ties and interphase precipitation behaviors in V-Ti microalloyed steel[J]. Acta Metall. Sin., 2014,50:524−530. (陈俊, 吕梦阳, 唐帅, 等. V-Ti 微合金钢的组织性能及相间析出行为[J]. 金属学报, 2014,50:524−530.
    [4] Phaniraj M P, Shin Youngmin, Lee Joonho, et al. Development of high strength hot rolled low carbon copper-bearing steel containing nanometer sized carbides[J]. Mater. Sci. Eng., 2015,A633:1−8.
    [5] Li Xiaolin, Wang Zhaodong. Interphase precipitation behaviors of nanometer-sized carbides in a Nb-Ti-bearing low- carbon microalloyed steel[J]. Acta Metall. Sin., 2015,51:417−424. (李小琳, 王昭东. 含 Nb-Ti 低碳微合金钢中纳米碳化物的相间析出行为[J]. 金属学报, 2015,51:417−424.
    [6] Zhang Ke, Li Zhaodong, Sui Fengli, et al. Effect of cooling rate on the tissue transformation and mechanical properties of Ti-V-Mo composite microalloyed steel[J]. Acta Metall. Sin., 2018,54(1):31−38. (张可, 李昭东, 隋凤利, 等. 冷却速率对Ti-V-Mo复合微合金钢组织转变及力学性能的影响[J]. 金属学报, 2018,54(1):31−38.
    [7] Gan Xiaolong, Han Bin, Tan Wen, et al. Continuous cooling transition curves of Ti-Nb composite microalloyed high-strength steel[J]. Thermal Processing Technology, 2015,44(24):79−81. (甘晓龙, 韩斌, 谭文, 等. Ti-Nb复合微合金化高强钢连续冷却转变曲线[J]. 热加工工艺, 2015,44(24):79−81.
    [8] Mecozzi M G, Sietsma J, Van Der Zwaag S. Analysis of γ→α transformation in a Nb micro-alloyed C-Mn steel by phase field modeling[J]. Acta Mater, 2006,54:1431−1440. doi: 10.1016/j.actamat.2005.11.014
    [9] Yang Gengwei, Mao Xinping, Zhao Gang, et al. Organizational properties and strengthening mechanism of Ti microalloyed high-strength hot-rolled strip steel[J]. Journal of Iron and Steel Research, 2016,28(12):75−80. (杨庚蔚, 毛新平, 赵刚, 等. Ti微合金化高强度热轧带钢组织性能及强化机理[J]. 钢铁研究学报, 2016,28(12):75−80.
    [10] Song Siying, Tian Junyu, Fan Lei, et al. Dynamic and static CCT curves of Q460 for high performance building[J]. Journal of Wuhan University of Science and Technology, 2021,44(6):406−414. (宋思颖, 田俊羽, 樊雷, 等. 高性能建筑结构用钢Q460的动态和静态CCT曲线研究[J]. 武汉科技大学学报, 2021,44(6):406−414.
    [11] He Xianling, Yang Gengwei, Mao Xinping, et al. Influence of Nb on the phase transformation pattern and tissue properties of Ti-Mo microalloyed steel by continuous cooling[J]. Acta Metall. Sin., 2017,53(6):648−656. (何仙灵, 杨庚蔚, 毛新平, 等. Nb对Ti-Mo微合金钢连续冷却相变规律及组织性能的影响[J]. 金属学报, 2017,53(6):648−656.
    [12] 雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006: 27.

    Yong Qilong. The second phase in steel materials [M]. Beijing: Metallurgical Industry Press, 2006: 27.
    [13] Misra R D K, Nathani H, Hartmann J E, et al. Microstructural evolution in a new 770 MPa hot rolled Nb-Ti microalloyed steel[J]. Materials Science and Engineering A, 2005,394:339−352. doi: 10.1016/j.msea.2004.11.041
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  19
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-01
  • 刊出日期:  2023-04-30

目录

    /

    返回文章
    返回