留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热处理工艺对2.0 GPa级冷轧热成形钢组织性能的影响

薛仁杰 曹晓恩 赵林林 刘鹏 高云哲

薛仁杰, 曹晓恩, 赵林林, 刘鹏, 高云哲. 热处理工艺对2.0 GPa级冷轧热成形钢组织性能的影响[J]. 钢铁钒钛, 2023, 44(2): 167-172. doi: 10.7513/j.issn.1004-7638.2023.02.024
引用本文: 薛仁杰, 曹晓恩, 赵林林, 刘鹏, 高云哲. 热处理工艺对2.0 GPa级冷轧热成形钢组织性能的影响[J]. 钢铁钒钛, 2023, 44(2): 167-172. doi: 10.7513/j.issn.1004-7638.2023.02.024
Xue Renjie, Cao Xiao’en, Zhao Linlin, Liu Peng, Gao Yunzhe. Effect of heat treatment process on the microstructure and properties of a 2.0 GPa cold-rolled hot-formed steel[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 167-172. doi: 10.7513/j.issn.1004-7638.2023.02.024
Citation: Xue Renjie, Cao Xiao’en, Zhao Linlin, Liu Peng, Gao Yunzhe. Effect of heat treatment process on the microstructure and properties of a 2.0 GPa cold-rolled hot-formed steel[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 167-172. doi: 10.7513/j.issn.1004-7638.2023.02.024

热处理工艺对2.0 GPa级冷轧热成形钢组织性能的影响

doi: 10.7513/j.issn.1004-7638.2023.02.024
详细信息
    作者简介:

    薛仁杰,1987年出生,男,工程师,硕士,主要从事汽车板产品开发及应用技术研究,E-mail:jierenxue@126.com

    通讯作者:

    刘鹏,1989年出生,男,工程师,硕士,主要从事冷轧高强钢产品开发及应用技术研究,E-mail:liupeng@hbisco.com

  • 中图分类号: TF76,TG156

Effect of heat treatment process on the microstructure and properties of a 2.0 GPa cold-rolled hot-formed steel

  • 摘要: 采用光学显微镜(OM)、扫描电镜(SEM)、电子探针(EPMA)等方法,对不同热处理温度下2.0 GPa级热成形钢显微组织与力学性能进行表征与分析。结果表明:随着奥氏体化温度的提高,屈服强度和抗拉强度呈现上升趋势,而断后伸长率呈现先升高后下降的趋势。经过890 ℃保温370 s,以100 ℃/s冷速淬火至室温,可获得抗拉强度2025 MPa,断后伸长率10.2 %,强塑积达到20.66 GPa%的良好性能。随着奥氏体化温度提高,可降低C、Mn元素偏析程度,改善马氏体带状组织,避免马氏体带状组织引起不协调变形,延缓产生裂纹源与提高材料塑性。
  • 图  2  不同热处理工艺下钢的原始奥氏体形貌(OM)

    Figure  2.  Prior austenite morphology (OM) under different heat treatment processes

    图  1  2 GPa基料组织

    Figure  1.  Microstructures of the 2 GPa base material

    图  3  不同热处理工艺下钢的显微组织(OM)

    Figure  3.  Microstructures of specimens under different heat treatment processes(OM)

    图  4  不同热处理工艺下钢的显微组织(SEM)

    Figure  4.  Microstructures of specimens under different heat treatment processes(SEM)

    图  5  不同热处理后试验钢中C、Mn元素分布的EPMA像

    (a)~(c)奥氏体化温度870 ℃/890 ℃/910 ℃下C元素分布;(d)~(f)奥氏体化温度870 ℃/890 ℃/910 ℃下Mn元素分布

    Figure  5.  EPMA images of C and Mn elements distributions of the tested steel after different heat treatment processes

    图  6  工程应力-应变曲线

    Figure  6.  Engineering stress-strain curve

    图  7  加工硬化率-真应变曲线

    Figure  7.  Work-hardening rate-true strain curve

    图  8  不同热处理工艺拉伸断口形貌(SEM)

    Figure  8.  Fractography under different heat treatment processes (SEM)

    表  1  试验钢主要成分

    Table  1.   Composition of the hot-formed steel %

    CSiMnPSCrBAlV&Nb
    0.3~0.50.3~0.61.4~2.0≤0.020≤0.0100.2~0.50.002~0.0050.03~0.0050.1~0.3
    下载: 导出CSV

    表  2  不同热处理工艺下试验钢力学性能

    Table  2.   Mechanical properties of the experimental steel under different heat treatment processes

    序号ReL/MPaRm/MPaA/%强塑积/(GPa%)
    工艺Ⅰ1091.31930.65.410.43
    工艺Ⅱ1491.62025.010.220.66
    工艺Ⅲ1515.32043.98.417.17
    下载: 导出CSV
  • [1] Zhao Zhengzhi, Chen Weijian, Gao Pengfei, et al. Progress and perspective of advanced high strength automotive steel[J]. Journal of Iron and Steel Research, 2020,32(12):1059−1076. (赵征志, 陈伟健, 高鹏飞, 等. 先进高强度汽车用钢研究进展及展望[J]. 钢铁研究学报, 2020,32(12):1059−1076. doi: 10.13228/j.boyuan.issn1001-0963.20200277
    [2] Huang Dapeng, Yang Guoqing, Zhang Mei, et al. Hot stamping forming technology and its latest research progress[J]. Shanghai Metals, 2017,39(5):83−89. (黄大鹏, 杨国庆, 张梅, 等. 热冲压成形技术及其新进展[J]. 上海金属, 2017,39(5):83−89. doi: 10.3969/j.issn.1001-7208.2017.05.018
    [3] Yi Hongliang, Chang Zhiyuan, Cai Helong, et al. Strength, ductility and fracture strain of press hardening steels[J]. Acta Metallurgica Sinica, 2020,56(4):429−443. (易红亮, 常智渊, 才贺龙, 等. 热冲压成形钢的强度与塑性及断裂应变[J]. 金属学报, 2020,56(4):429−443. doi: 10.11900/0412.1961.2020.00003
    [4] Lu Hongzhou, Zhao Yan, Feng Yi, et al. Latest progress of Nb microalloying hot-formed steel[J]. Automobile Technology & Material, 2021,(4):23−32. (路洪洲, 赵岩, 冯毅, 等. 铌微合金化热成形钢的最新进展[J]. 汽车工艺与材料, 2021,(4):23−32. doi: 10.19710/J.cnki.1003-8817.20200467
    [5] Song Ninghong, Lin Chao, Bi Wenzhen, et al. Effect of tempering time on microstructure and properties of 1800 MPa hot stamping steel[J]. Heat Treatment of Metals, 2022,47(8):112−117. (宋宁宏, 林超, 毕文珍, 等. 回火时间对1800 MPa级热成形钢组织和性能的影响[J]. 金属热处理, 2022,47(8):112−117.
    [6] Jiang Chao, Shan Zhongde, Zhuang Bailiang, et al. Microstructure and properties of hot stamping 22MnB5 steel[J]. Transactions of Materials and Heat Treatment, 2012,33(3):78−81. (姜超, 单忠德, 庄百亮, 等. 热冲压成形22MnB5钢板的组织和性能[J]. 材料热处理学报, 2012,33(3):78−81.
    [7] Li Runchang, Fan Hongmei, Zhao Haifeng, et al. Effects of continuous annealing on microstructure and mechanical properties of 1500 MPa grade 22MnB5 steel[J]. Hot Working Technology, 2022,(20):146−148. (李润昌, 范红妹, 赵海峰, 等. 连续退火对1500 MPa级22MnB5钢组织与力学性能的影响[J]. 热加工工艺, 2022,(20):146−148.
    [8] Yang Haigen, Zhao Zhengzhi, Yang Yuanhua, et al. Microstructure and properties of 1800 MPa-grade cold-rolled hot stamping steel[J]. Transactions of Materials and Heat Treatment, 2017,38(7):120−125. (杨海根, 赵征志, 杨源华, 等. 1800 MPa级冷轧热成形钢的组织与性能[J]. 材料热处理学报, 2017,38(7):120−125.
    [9] Guo Yazhou, Song Ninghong, Ni Lei, et al. JMatPro calculation and experimental study of microstructure transformation of B1800HS hot-formed steel[J]. Heat Treatment of Metals, 2022,47(3):239−244. (郭亚洲, 宋宁宏, 倪雷, 等. B1800HS热成形钢组织转变的JMatPro计算和试验研究[J]. 金属热处理, 2022,47(3):239−244.
    [10] 梁江涛. 2000 MPa级热成形钢的强韧化机制及应用技术研究[D]. 北京: 北京科技大学, 2019.

    Liang Jiangtao. Strengthen toughening mechanism and application technology of 2000 MPa grade hot stamping steel[D]. Beijing: University of Science and Technology Beijing, 2019.
    [11] 唐荻. 汽车用先进高强板带钢[M]. 北京: 冶金工业出版社, 2016.

    Tang Di. Advanced high strength strip steel for automobile[M]. Beijing: Metallurgical Industry Press, 2016.
    [12] Cheng Junye, Zhao Aimin, Chen Yinli, et al. EBSD studies of 30MnB5 hot stamping steel tempered at different temperature[J]. Acta Metallurgica Sinica, 2013,49(2):137−145. (程俊业, 赵爱民, 陈银莉, 等. 不同温度回火后30MnB5热成形钢的EBSD研究[J]. 金属学报, 2013,49(2):137−145. doi: 10.3724/SP.J.1037.2012.00451
    [13] Liu Anmin, Feng Yi, Zhao Yan, et al. Effect of niobium and vanadium micro-alloying on microstructure and property of 22MnB5 hot press forming steel[J]. Materials for Mechanical Engineering, 2019,43(5):34−37. (刘安民, 冯毅, 赵岩, 等. 铌钒微合金化对22MnB5热成形钢显微组织与性能的影响[J]. 机械工程材料, 2019,43(5):34−37. doi: 10.11973/jxgccl201905007
    [14] Zhang Zhengyan, Sun Xinjun, Yong Qilong, et al. Precipitation behavior of nanometer-sized carbides in Nb-Mo microalloyed high strength steel and its strengthening mechanism[J]. Acta Metallurgica Sinica, 2016,52(4):410−418. (张正延, 孙新军, 雍岐龙, 等. Nb-Mo微合金高强钢强化机理及其纳米级碳化物析出行为[J]. 金属学报, 2016,52(4):410−418. doi: 10.11900/0412.1961.2015.00482
    [15] Xu Dechao, Zhang Boming, Wang Pengtao, et al. Effect of Si and Mn on continuous cooling transformation behavior of hot forming steel[J]. Physics Examination and Testing, 2020,38(3):1−6. (徐德超, 张博明, 王彭涛, 等. Si、Mn元素对热成形钢连续冷却转变行为影响[J]. 物理测试, 2020,38(3):1−6. doi: 10.13228/j.boyuan.issn1001-0777.20190088
    [16] Xiao Gang, Bu Xiaobing, Yang Qinwen, et al. Research on monotonic tension deformation and fracture behavior of the high manganese hadfield steel[J]. Materials Reports, 2019,33(22):3811−3814. (肖罡, 卜晓兵, 杨钦文, 等. 高锰Hadfield钢单向拉伸变形及断裂行为研究[J]. 材料导报, 2019,33(22):3811−3814. doi: 10.11896/cldb.18090288
    [17] 付立铭. 高强韧低碳TWIP钢的制备及组织与性能研究[D]. 上海: 上海交通大学, 2014.

    Fu Liming. Fabrication of high-strength and high-ductlity low carbon TWIP steels and their microstructures and properties[D]. Shanghai: Shanghai Jiao Tong University, 2014.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  26
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-11
  • 刊出日期:  2023-04-30

目录

    /

    返回文章
    返回