Effect of heat treatment process on the microstructure and properties of a 2.0 GPa cold-rolled hot-formed steel
-
摘要: 采用光学显微镜(OM)、扫描电镜(SEM)、电子探针(EPMA)等方法,对不同热处理温度下2.0 GPa级热成形钢显微组织与力学性能进行表征与分析。结果表明:随着奥氏体化温度的提高,屈服强度和抗拉强度呈现上升趋势,而断后伸长率呈现先升高后下降的趋势。经过890 ℃保温370 s,以100 ℃/s冷速淬火至室温,可获得抗拉强度2025 MPa,断后伸长率10.2 %,强塑积达到20.66 GPa%的良好性能。随着奥氏体化温度提高,可降低C、Mn元素偏析程度,改善马氏体带状组织,避免马氏体带状组织引起不协调变形,延缓产生裂纹源与提高材料塑性。Abstract: Optical microscope (OM), scanning electron microscope (SEM) and electron probe (EPMA) were used to characterize and analyze the microstructure and mechanical properties of a 2.0 GPa hot-formed steel heat-treated by different heat treatment temperature. The results show that the yield strength and tensile strength increased with the increase in austenitizing temperature, while the elongation after fracture increased to a maximum and then decreased. After holding at 890 ℃ for 370 s, and quenching to room temperature at a cooling rate of 100 ℃/s, a steel with the tensile strength of 2025 MPa, the 10.2% elongation after fracture and the 20.66 GPa% strength-plastic product can be obtained. As the austenitization temperature increases, the segregation degree of C and Mn elements can be reduced, and the martensite band structure can be improved. In the meanwhile, the uncoordinated deformation caused by the martensite band structure can be avoided, and thus the occurrence of crack sources can be delayed, as well as the plasticity can be improved.
-
Key words:
- hot-formed steel /
- austenitizing temperature /
- microstructure /
- strength plasticity /
- element enrichment
-
表 1 试验钢主要成分
Table 1. Composition of the hot-formed steel
% C Si Mn P S Cr B Al V&Nb 0.3~0.5 0.3~0.6 1.4~2.0 ≤0.020 ≤0.010 0.2~0.5 0.002~0.005 0.03~0.005 0.1~0.3 表 2 不同热处理工艺下试验钢力学性能
Table 2. Mechanical properties of the experimental steel under different heat treatment processes
序号 ReL/MPa Rm/MPa A/% 强塑积/(GPa%) 工艺Ⅰ 1091.3 1930.6 5.4 10.43 工艺Ⅱ 1491.6 2025.0 10.2 20.66 工艺Ⅲ 1515.3 2043.9 8.4 17.17 -
[1] Zhao Zhengzhi, Chen Weijian, Gao Pengfei, et al. Progress and perspective of advanced high strength automotive steel[J]. Journal of Iron and Steel Research, 2020,32(12):1059−1076. (赵征志, 陈伟健, 高鹏飞, 等. 先进高强度汽车用钢研究进展及展望[J]. 钢铁研究学报, 2020,32(12):1059−1076. doi: 10.13228/j.boyuan.issn1001-0963.20200277 [2] Huang Dapeng, Yang Guoqing, Zhang Mei, et al. Hot stamping forming technology and its latest research progress[J]. Shanghai Metals, 2017,39(5):83−89. (黄大鹏, 杨国庆, 张梅, 等. 热冲压成形技术及其新进展[J]. 上海金属, 2017,39(5):83−89. doi: 10.3969/j.issn.1001-7208.2017.05.018 [3] Yi Hongliang, Chang Zhiyuan, Cai Helong, et al. Strength, ductility and fracture strain of press hardening steels[J]. Acta Metallurgica Sinica, 2020,56(4):429−443. (易红亮, 常智渊, 才贺龙, 等. 热冲压成形钢的强度与塑性及断裂应变[J]. 金属学报, 2020,56(4):429−443. doi: 10.11900/0412.1961.2020.00003 [4] Lu Hongzhou, Zhao Yan, Feng Yi, et al. Latest progress of Nb microalloying hot-formed steel[J]. Automobile Technology & Material, 2021,(4):23−32. (路洪洲, 赵岩, 冯毅, 等. 铌微合金化热成形钢的最新进展[J]. 汽车工艺与材料, 2021,(4):23−32. doi: 10.19710/J.cnki.1003-8817.20200467 [5] Song Ninghong, Lin Chao, Bi Wenzhen, et al. Effect of tempering time on microstructure and properties of 1800 MPa hot stamping steel[J]. Heat Treatment of Metals, 2022,47(8):112−117. (宋宁宏, 林超, 毕文珍, 等. 回火时间对1800 MPa级热成形钢组织和性能的影响[J]. 金属热处理, 2022,47(8):112−117. [6] Jiang Chao, Shan Zhongde, Zhuang Bailiang, et al. Microstructure and properties of hot stamping 22MnB5 steel[J]. Transactions of Materials and Heat Treatment, 2012,33(3):78−81. (姜超, 单忠德, 庄百亮, 等. 热冲压成形22MnB5钢板的组织和性能[J]. 材料热处理学报, 2012,33(3):78−81. [7] Li Runchang, Fan Hongmei, Zhao Haifeng, et al. Effects of continuous annealing on microstructure and mechanical properties of 1500 MPa grade 22MnB5 steel[J]. Hot Working Technology, 2022,(20):146−148. (李润昌, 范红妹, 赵海峰, 等. 连续退火对1500 MPa级22MnB5钢组织与力学性能的影响[J]. 热加工工艺, 2022,(20):146−148. [8] Yang Haigen, Zhao Zhengzhi, Yang Yuanhua, et al. Microstructure and properties of 1800 MPa-grade cold-rolled hot stamping steel[J]. Transactions of Materials and Heat Treatment, 2017,38(7):120−125. (杨海根, 赵征志, 杨源华, 等. 1800 MPa级冷轧热成形钢的组织与性能[J]. 材料热处理学报, 2017,38(7):120−125. [9] Guo Yazhou, Song Ninghong, Ni Lei, et al. JMatPro calculation and experimental study of microstructure transformation of B1800HS hot-formed steel[J]. Heat Treatment of Metals, 2022,47(3):239−244. (郭亚洲, 宋宁宏, 倪雷, 等. B1800HS热成形钢组织转变的JMatPro计算和试验研究[J]. 金属热处理, 2022,47(3):239−244. [10] 梁江涛. 2000 MPa级热成形钢的强韧化机制及应用技术研究[D]. 北京: 北京科技大学, 2019.Liang Jiangtao. Strengthen toughening mechanism and application technology of 2000 MPa grade hot stamping steel[D]. Beijing: University of Science and Technology Beijing, 2019. [11] 唐荻. 汽车用先进高强板带钢[M]. 北京: 冶金工业出版社, 2016.Tang Di. Advanced high strength strip steel for automobile[M]. Beijing: Metallurgical Industry Press, 2016. [12] Cheng Junye, Zhao Aimin, Chen Yinli, et al. EBSD studies of 30MnB5 hot stamping steel tempered at different temperature[J]. Acta Metallurgica Sinica, 2013,49(2):137−145. (程俊业, 赵爱民, 陈银莉, 等. 不同温度回火后30MnB5热成形钢的EBSD研究[J]. 金属学报, 2013,49(2):137−145. doi: 10.3724/SP.J.1037.2012.00451 [13] Liu Anmin, Feng Yi, Zhao Yan, et al. Effect of niobium and vanadium micro-alloying on microstructure and property of 22MnB5 hot press forming steel[J]. Materials for Mechanical Engineering, 2019,43(5):34−37. (刘安民, 冯毅, 赵岩, 等. 铌钒微合金化对22MnB5热成形钢显微组织与性能的影响[J]. 机械工程材料, 2019,43(5):34−37. doi: 10.11973/jxgccl201905007 [14] Zhang Zhengyan, Sun Xinjun, Yong Qilong, et al. Precipitation behavior of nanometer-sized carbides in Nb-Mo microalloyed high strength steel and its strengthening mechanism[J]. Acta Metallurgica Sinica, 2016,52(4):410−418. (张正延, 孙新军, 雍岐龙, 等. Nb-Mo微合金高强钢强化机理及其纳米级碳化物析出行为[J]. 金属学报, 2016,52(4):410−418. doi: 10.11900/0412.1961.2015.00482 [15] Xu Dechao, Zhang Boming, Wang Pengtao, et al. Effect of Si and Mn on continuous cooling transformation behavior of hot forming steel[J]. Physics Examination and Testing, 2020,38(3):1−6. (徐德超, 张博明, 王彭涛, 等. Si、Mn元素对热成形钢连续冷却转变行为影响[J]. 物理测试, 2020,38(3):1−6. doi: 10.13228/j.boyuan.issn1001-0777.20190088 [16] Xiao Gang, Bu Xiaobing, Yang Qinwen, et al. Research on monotonic tension deformation and fracture behavior of the high manganese hadfield steel[J]. Materials Reports, 2019,33(22):3811−3814. (肖罡, 卜晓兵, 杨钦文, 等. 高锰Hadfield钢单向拉伸变形及断裂行为研究[J]. 材料导报, 2019,33(22):3811−3814. doi: 10.11896/cldb.18090288 [17] 付立铭. 高强韧低碳TWIP钢的制备及组织与性能研究[D]. 上海: 上海交通大学, 2014.Fu Liming. Fabrication of high-strength and high-ductlity low carbon TWIP steels and their microstructures and properties[D]. Shanghai: Shanghai Jiao Tong University, 2014. -