留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焊接工艺对汽车控制臂焊接变形的影响

王大锋 张广和 胡全达 任政 姜彤

王大锋, 张广和, 胡全达, 任政, 姜彤. 焊接工艺对汽车控制臂焊接变形的影响[J]. 钢铁钒钛, 2023, 44(2): 173-178. doi: 10.7513/j.issn.1004-7638.2023.02.025
引用本文: 王大锋, 张广和, 胡全达, 任政, 姜彤. 焊接工艺对汽车控制臂焊接变形的影响[J]. 钢铁钒钛, 2023, 44(2): 173-178. doi: 10.7513/j.issn.1004-7638.2023.02.025
Wang Dafeng, Zhang Guanghe, Hu Quanda, Ren Zheng, Jiang Tong. Effect of welding process on welding deformation of automobile control arm[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 173-178. doi: 10.7513/j.issn.1004-7638.2023.02.025
Citation: Wang Dafeng, Zhang Guanghe, Hu Quanda, Ren Zheng, Jiang Tong. Effect of welding process on welding deformation of automobile control arm[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 173-178. doi: 10.7513/j.issn.1004-7638.2023.02.025

焊接工艺对汽车控制臂焊接变形的影响

doi: 10.7513/j.issn.1004-7638.2023.02.025
基金项目: 国家自然科学基金(51901236);宁波市科技攻关计划项目(2022Z073);企业技术开发项目(2021330200000763);中国兵器工业集团第五二所所列基金(NBFJ2022-07)。
详细信息
    作者简介:

    王大锋,1987年出生,男,安徽阜阳人,博士研究生,副研究员,长期从事高能复合焊接与表面工程技术研究工作,E-mail:bjing2013saw@126.com

  • 中图分类号: TG444

Effect of welding process on welding deformation of automobile control arm

  • 摘要: 以汽车控制臂焊接构件作为研究对象,利用SYSWELD软件对控制臂构件的焊接热输入和焊接顺序进行优化。结果表明:当焊接热输入偏小时(2015~2266 J/cm),控制臂上下片之间的角焊缝焊根位置会出现未焊透缺陷;当焊接热输入适中时(2527~2701 J/cm),角焊缝能获得较好的焊缝熔宽和熔深。此外,对比分析不同焊接顺序下控制臂的残余应力和变形,发现采用先中间后两边(①④③⑤⑥②⑦⑧)的焊接顺序有利于降低控制臂整体的残余应力峰值;采用其它的焊接顺序时,控制臂整体的残余应力峰值较高,焊接变形也较大。试验与仿真结果对比表明,仿真结果的准确性较高,利用有限元仿真能优化汽车控制臂的焊接工艺,提高控制臂产品的焊接质量。
  • 图  1  控制臂构件的CAE模型

    Figure  1.  The CAE model of control arm

    图  2  控制臂构件的温度场模型

    Figure  2.  Temperature field model of control arm

    图  3  控制臂构件的焊缝示意

    Figure  3.  Schematic diagram of welds of control arm

    图  4  正交试验焊接接头温度场分布

    (a)~(i)对应试验号1~9

    Figure  4.  Temperature field distribution at welding joint for orthogonal experiment

    图  5  正交试验焊接接头变形场分布

    (a)~(i)对应试验号1~9

    Figure  5.  Deformation field distribution at welding joint for orthogonal experiment

    图  6  不同焊接顺序下控制臂构件的残余应力分布

    (a)~(d)分别为方案1~4

    Figure  6.  Residual stress distribution in control arm with different welding sequence

    图  7  不同焊接顺序下控制臂构件的变形分布

    (a)~(d)分别为方案1~4

    Figure  7.  Deformation distribution in control arm with different welding sequence

    表  1  FB60钢化学成分

    Table  1.   Mass fraction of elements in FB60 steel %

    CSiMnPSCrNiMoNbVFe
    0.0810.0781.450.0140.040.0380.0160.020.027<0.01Bal.
    下载: 导出CSV

    表  2  FB60钢的性能参数

    Table  2.   Performance parameters of FB60 steel

    温度 /℃密度 /
    (kg·m−3)
    导热率 /
    (W·m−1 ·K−1)
    比热容 /
    (J·kg−1 ·K−1)
    弹性
    模量 /
    GPa
    泊松
    热膨胀
    系数 /
    −1
    257.8570.644033.80.2898.72×10−6
    1007.85654450.29211.8×10−6
    2007.85604500.29613.2×10−6
    3007.8555.6452118.60.314.1×10−6
    4007.85504000.30414.8×10−6
    5007.85473500.30815.1×10−6
    6007.8542.929830.30.32115.2×10−6
    7007.85402500.32915.2×10−6
    9007.8537.81083.470.34511.9×10−6
    11007.85371200.35113.7×10−6
    下载: 导出CSV

    表  3  正交试验参数

    Table  3.   Orthogonal experimental parameters

    编号试验
    方案
    (A)焊接
    电压/V
    (B)焊接
    电流/A
    (C)焊接速
    度/(m·s−1)
    热输入/
    (J·cm−1)
    接头
    质量
    1A1B1C1181550.0082266未焊透
    2A1B2C2181650.0092145未焊透
    3A1B3C3181750.0102047未焊透
    4A2B1C2191550.0092126未焊透
    5A2B2C3191650.0102037未焊透
    6A2B3C1191750.0082701完全焊透
    7A3B1C3201550.0102015未焊透
    8A3B2C1201650.0082681完全焊透
    9A3B3C2201750.0092527完全焊透
    下载: 导出CSV

    表  4  施焊顺序方案

    Table  4.   Welding sequence scheme

    编号焊接顺序
    方案1①②③④⑤⑥⑦⑧
    方案2①④②⑥⑤③⑦⑧
    方案3①④③⑤⑥②⑦⑧
    方案4②③⑤⑥①④⑦⑧
    下载: 导出CSV

    表  5  试验和模拟结果对比

    Table  5.   Comparison of experimental and simulation results

    编号控制臂最大残余应力/MPa控制臂最大残余变形/mm
    计算仿真5680.41
    实际焊接5360.39
    下载: 导出CSV
  • [1] 蒋荣超. 轿车悬架零部件性能匹配与轻量化多目标优化方法研究[D]. 吉林: 吉林大学, 2016.

    Jiang Rongchao. Research on lightweight multi-objective optimization method and performance matching for car suspension components[D]. Jilin: Jilin University, 2016.
    [2] Jin Yi, Liu Jin, Zhen Tong, et al. Research on fatigue behavior of 800 MPa grade high strength steel used for chassis control arm[J]. Shanghai Metals, 2021,43(6):47−51. (金一, 柳进, 甄彤, 等. 底盘控制臂用800 MPa级高强度钢的疲劳特性研究[J]. 上海金属, 2021,43(6):47−51.
    [3] Li Y, Yang H, Xing Z. Numerical simulation and process optimization of squeeze casting process of an automobile control arm[J]. The International Journal of Advanced Manufacturing Technology, 2017,88(1):941−947.
    [4] Lu Chunyan, Xu Zhaolei, Liu Hejun, et al. Multi-objective topology optimization design of automobile suspension control arm[J]. Mechanical & Electrical Engineering Technology, 2021,50(10):93−95,131. (鲁春艳, 徐赵磊, 刘何俊, 等. 汽车悬架控制臂多目标拓扑优化设计[J]. 机电工程技术, 2021,50(10):93−95,131.
    [5] Zhang Yi, Han Yang, Zhang Zhou. Numerical simulation of stress and deformation of Q690D high-strength steel thick plate multi-layer and multi-pass welding[J]. Hot Working Technology, 2022,51(8):117−121. (张义, 韩阳, 张舟. Q690D高强钢厚板多层多道焊应力与变形的数值模拟[J]. 热加工工艺, 2022,51(8):117−121.
    [6] Zheng B, Yang S, Jin X, et al. Test on residual stress distribution of welded S600E high-strength stainless steel sections[J]. Journal of Constructional Steel Research, 2020,168:105994. doi: 10.1016/j.jcsr.2020.105994
    [7] Colombo T C A, Rego R, Faria A R D, et al. Processing-induced residual stresses in TWIP steel weld spots[J]. Materials and Manufacturing Processes, 2020,32(5):572−578.
    [8] Kromm A, Lausch T, Schröpfer D, et al. Influence of welding stresses on relief cracking during heat treatment of a creep-resistant 13CrMoV steel: part I-effect of heat control on welding stresses and stress relief cracking[J]. Welding in the World, 2020,64(5):807−817. doi: 10.1007/s40194-020-00875-6
    [9] Dong Xianchun, Zhang Xi, Chen Yanqing. Microstructure and toughness in the coarse grain region of low carbon bainite high strength steel plate for Q690CFD[J]. Iron Steel Vanadium Titanium, 2011,32(1):62−66. (董现春, 张熹, 陈延清. 低碳贝氏体高强钢Q690CFD焊接粗晶区组织韧性[J]. 钢铁钒钛, 2011,32(1):62−66.
    [10] Yi J, Zhang J, Cao S, et al. Effect of welding sequence on residual stress and deformation of 6061-T6 aluminium alloy automobile component[J]. Transactions of Nonferrous Metals Society of China, 2019,29(2):9−15.
    [11] Pavan A R, Arivazhagan B, Vasudevan M, et al. Numerical simulation and validation of residual stresses and distortion in type 316L (N) stainless steel weld joints fabricated by advanced welding techniques[J]. CIRP Journal of Manufacturing Science and Technology, 2022,39:294−307. doi: 10.1016/j.cirpj.2022.08.010
    [12] Ghafouri M, Ahn J, Mourujärvi J, et al. Finite element simulation of welding distortions in ultra-high strength steel S960 MC including comprehensive thermal and solid-state phase transformation models[J]. Engineering Structures, 2020,219:110804. doi: 10.1016/j.engstruct.2020.110804
    [13] Rong Y, Xu J, Huang Y, et al. Review on finite element analysis of welding deformation and residual stress[J]. Science and Technology of Welding and Joining, 2018,23(3):198−208. doi: 10.1080/13621718.2017.1361673
    [14] Wang X, Gong J, Zhao Y, et al. Numerical simulation to study the effect of arc travelling speed and welding sequences on residual stresses in welded sections of new ferritic p92 pipes[J]. High Temperature Materials and Processes, 2016,35(2):121−128. doi: 10.1515/htmp-2014-0170
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  34
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-08
  • 刊出日期:  2023-04-30

目录

    /

    返回文章
    返回