留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低频电源频率对GCr15电渣锭中液析碳化物的影响

苏云龙 朱春丽 张龙飞 王蒙俊 项淼苗 施晓芳 常立忠

苏云龙, 朱春丽, 张龙飞, 王蒙俊, 项淼苗, 施晓芳, 常立忠. 低频电源频率对GCr15电渣锭中液析碳化物的影响[J]. 钢铁钒钛, 2023, 44(2): 179-186. doi: 10.7513/j.issn.1004-7638.2023.02.026
引用本文: 苏云龙, 朱春丽, 张龙飞, 王蒙俊, 项淼苗, 施晓芳, 常立忠. 低频电源频率对GCr15电渣锭中液析碳化物的影响[J]. 钢铁钒钛, 2023, 44(2): 179-186. doi: 10.7513/j.issn.1004-7638.2023.02.026
Su Yunlong, Zhu Chunli, Zhang Longfei, Wang Mengjun, Xiang Miaomiao, Shi Xiaofang, Chang Lizhong. Effect of low frequency power supply frequency on liquidus carbides in GCr15 electroslag ingot[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 179-186. doi: 10.7513/j.issn.1004-7638.2023.02.026
Citation: Su Yunlong, Zhu Chunli, Zhang Longfei, Wang Mengjun, Xiang Miaomiao, Shi Xiaofang, Chang Lizhong. Effect of low frequency power supply frequency on liquidus carbides in GCr15 electroslag ingot[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 179-186. doi: 10.7513/j.issn.1004-7638.2023.02.026

低频电源频率对GCr15电渣锭中液析碳化物的影响

doi: 10.7513/j.issn.1004-7638.2023.02.026
基金项目: 国家自然科学基金资助(51974002/52074002);安徽省自然科学基金资助(2208085J37)。
详细信息
    作者简介:

    苏云龙,1997年出生,男,安徽合肥人,硕士生,研究方向:特殊钢冶金,E-mail:1652289825@qq.com

    通讯作者:

    施晓芳,1978年出生,女,博士,副教授,硕士生导师,研究方向:特殊钢冶金,E-mail: shixiaofang602@163.com

  • 中图分类号: TF142,TF76

Effect of low frequency power supply frequency on liquidus carbides in GCr15 electroslag ingot

  • 摘要: 为了进一步提高电渣锭的凝固质量,设计了低频电渣重熔炉,研究了不同频率对电渣锭中液析碳化物的影响。采用扫描电镜观察了液析碳化物的形貌、成分,并在光学显微镜下观察了GCr15轴承钢电渣锭中液析碳化物的尺寸变化。研究结果表明,相比于工频时,低频可以有效降低碳化物数量,特别是对于边部和2/3R处,碳化物数量下降幅度较大,在频率为0.4 Hz时下降幅度最大,分别为71.05%和48.00%。不管是边部、芯部还是2/3R处,低频均能降低液析碳化物的最大尺寸。特别是对边部和2/3R处碳化物的影响最大,边部最大尺寸从工频时的11.64 μm减小至0.4 Hz时的7.39 μm,减小了36.51%;2/3R处最大尺寸从工频时的20.58 μm减小至0.4 Hz时的12.61 μm,减小了38.73%。
  • 图  1  低频电渣重熔炉示意

    1- 变压器;2- 低频电源控制柜;3-结晶器;4- 金属熔池;5-低水箱;6-电极

    Figure  1.  Experimental device of low frequency power supply electroslag furnace

    图  2  GCr15电渣锭中液析碳化物数量的变化

    Figure  2.  Variation of the number of liquid carbides in GCr15 ESR ingot

    图  3  频率对边部液析碳化物尺寸的影响

    (a)尺寸分布 ;(b)平均尺寸与最大尺寸

    Figure  3.  Effect of frequency on size of edge liquid carbides

    图  4  频率对2/3R处液析碳化物尺寸的影响

    (a)尺寸分布; (b)平均尺寸与最大尺寸

    Figure  4.  Effect of frequency on size of liquid carbides at 2/3R

    图  5  频率对芯部液析碳化物尺寸的影响

    (a)尺寸分布; (b)平均尺寸与最大尺寸

    Figure  5.  Effect of frequency on size of liquid carbides in heart

    图  6  不同频率下电渣锭中液析碳化物的形貌(×500)

    Figure  6.  Morphology of liquid carbides at different frequencies (×500 )

    图  7  典型液析碳化物的元素分布

    Figure  7.  Element distribution of representative liquid carbides

    图  8  不同电源频率电渣重熔过程示意

    Figure  8.  Schematic diagram of electroslag remelting process at different power frequencies

    表  1  GCr15轴承钢主要化学成分

    Table  1.   Main chemical composition of GCr15 bearing steel %

    CMnSiCrPAlSN
    0.990.350.211.470.0090.0080.0010.0039
    下载: 导出CSV

    表  2  试验方案

    Table  2.   Experimental schemes

    试验方案重熔电流/A重熔电压/V频率/Hz周期/s钢种
    11800320.110GCr15
    21800320.42.5GCr15
    318003211GCr15
    418003220.5GCr15
    5180032500.02GCr15
    下载: 导出CSV

    表  3  不同频率下液析碳化物尺寸的变化

    Table  3.   Changes of size of liquidated carbides at different frequencies

    频率/Hz取样位置最小尺寸/μm最大尺寸/μm平均尺寸/μm
    50边部4.2611.647.06
    2/3R4.5320.589.08
    芯部5.1315.429.62
    2边部5.1214.017.00
    2/3R4.9116.298.34
    芯部3.0217.008.08
    1边部3.6410.335.36
    2/3R4.6618.688.45
    芯部3.9216.878.25
    0.4边部5.729.167.55
    2/3R4.3012.617.35
    芯部4.9213.177.31
    0.1边部3.647.394.98
    2/3R4.2722.677.65
    芯部3.4515.288.54
    下载: 导出CSV
  • [1] 杜刚. 基于电渣重熔GCr15轴承钢中碳化物控制的研究[D]. 北京: 北京科技大学, 2018.

    Du Gang. Study on carbide control in GCr15 bearing steel based on electroslag remelting[D]. Beijing: Beijing University of Science and Technology, 2018.
    [2] 薛正良, 朱航宇, 常立忠. 特种熔炼[M]. 北京: 冶金工业出版社, 2018: 80.

    Xue Zhengliang, Zhu Hangyu, Chang Lizhong. Special smelting [M]. Beijing: Metallurgical Industry Press, 2018: 80.
    [3] 李正邦. 电渣冶金的理论与实践[M]. 北京: 冶金工业出版社, 2010.

    Li Zhengbang . Theory and practice of electroslag metallurgy [M]. Beijing: Metallurgical Industry Press, 2010.
    [4] Li Hong, Yang Yiming, Lv Peng. Development and application of 120 t low frequency electroslag furnace power supply system[J]. Metallurgical Industry Automation, 2017,41(2):40−44,65. (李宏, 杨毅明, 吕鹏. 120 t低频电渣炉电源系统研制及应用[J]. 冶金自动化, 2017,41(2):40−44,65.
    [5] Li Zhengbang. Development history, current situation and trend of electroslag metallurgy[J]. Journal of Materials and Metallurgy, 2011,10(S1):1−7. (李正邦. 电渣冶金的发展历程、现状及趋势[J]. 材料与冶金学报, 2011,10(S1):1−7. doi: 10.3969/j.issn.1671-6620.2011.z1.001
    [6] 余坤. 低频电渣重熔特性的研究[D]. 南昌: 南昌大学, 2019.

    Yu Kun. Study on the characteristics of low frequency electroslag remelting [D]. Nanchang: Nanchang University, 2019.
    [7] Du G, Li J, Wang Z B. Control of carbide precipitation during electroslag remelting-continuous rapid solidification of GCr15 steel[J]. Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science, 2017,48(6):2873−2890. doi: 10.1007/s11663-017-1089-3
    [8] Qi Y F, Li J, Shi C B, et al. Effect of directional solidification of electroslag remelting on the microstructure and primary carbides in an austenitic hot-work die steel[J]. Journal of Materials Processing Technology, 2017,249(11):32−38.
    [9] He Bao, Li Jing, Shi Chengbin, et al. Effect of cooling intensity on carbides in H13 steel containing magnesium during electroslag remelting[J]. Chinese Journal of Engineering, 2016,38(12):1720−1727. (贺宝, 李晶, 史成斌, 等. 电渣重熔过程冷却强度对含镁H13钢中碳化物的影响[J]. 工程科学学报, 2016,38(12):1720−1727.
    [10] Chang Kaihua, Xu Tao, Zhu Chunli, et al. Effect of electroslag remelting on oxygen content and inclusions in GCr15 bearing steel[J]. Iron Steel Vanadium Titanium, 2021,42(4):175−181. (常凯华, 徐涛, 朱春丽, 等. 电渣重熔对GCr15轴承钢中氧含量及夹杂物的影响[J]. 钢铁钒钛, 2021,42(4):175−181. doi: 10.7513/j.issn.1004-7638.2021.04.029
    [11] 陈锟. 控制Cr5钢冷轧辊坯质量的锻造变形工艺研究[D]. 上海: 上海大学, 2011: 29-32.

    Chen Kun. Study on forging deformation process for controlling the quality of Cr5 steel cold roll blank [D]. Shanghai: Shanghai University, 2011: 29-32.
    [12] Yu Ruizhi, Liu Hongbo. Effect of heating temperature and time on dissolution and diffusion of liquid precipitation carbides in MC5 roll steel[J]. Special Steel Technology, 2013,19(2):31−34,51. (于瑞芝, 刘洪波. 加热温度与时间对MC5 轧辊钢液析碳化物溶解扩散的影响[J]. 特钢技术, 2013,19(2):31−34,51. doi: 10.3969/j.issn.1674-0971.2013.02.009
    [13] Chang Lizhong, Gao Gang, Shi Xiaofang, et al. Effect of magnesium on liquidus carbide in GCr15 bearing steel[J]. The Chinese Journal of Process Engineering, 2019,19(2):362−369. (常立忠, 高岗, 施晓芳, 等. 镁对GCr15轴承钢中液析碳化物的影响[J]. 过程工程学报, 2019,19(2):362−369. doi: 10.12034/j.issn.1009-606X.218227
    [14] Sui Tieliu. Overview of electroslag remelting abroad and development direction of electroslag remelting in China[J]. Journal of Materials and Metallurgy, 2011,10(S1):21−28. (隋铁流. 国外电渣重熔概况及我国电渣重熔的发展方向[J]. 材料与冶金学报, 2011,10(S1):21−28. doi: 10.3969/j.issn.1671-6620.2011.z1.004
    [15] Zhang B, Chen K, Wang R, et al. Physical modelling of splashing triggered by the gas jet of an oxygen lance in a converter[J]. Metals, 2019,9(4):409. doi: 10.3390/met9040409
    [16] 杨晓蔚. 由GCr15钢的化学成分设计看轴承钢的研发准则[J]. 轴承, 2022(12): 28−31.

    Yang Xiaowei. Research and development criteria of bearing steel from the chemical composition design of GCr15 steel[J]. Bearing, 2022(12): 28-31.
    [17] Yin Fuxing, Su Ming, Ji Fa, et al. Effect of melting rate on microsegregation and primary MC carbides in M2 high-speed steel during electroslag remelting[J]. China Foundry, 2021,18(3):163−169. doi: 10.1007/s41230-021-9009-1
    [18] Li Xing, Jiang Zhouhua, Geng Xin, et al. Numerical simulation of a new electroslag remelting technology with current conductive stationary mold[J]. Applied Thermal Engineering, 2019,147:736−746. doi: 10.1016/j.applthermaleng.2018.10.086
    [19] Chang Lizhong, Li Zhengbang. Control method of metal solidification in electroslag remelting process[J]. Steelmaking, 2007,(4):56−58,62. (常立忠, 李正邦. 电渣重熔过程中金属凝固的控制方法[J]. 炼钢, 2007,(4):56−58,62. doi: 10.3969/j.issn.1002-1043.2007.04.015
    [20] Li Hong. On the development of high-power low-frequency power supply in China[J]. Journal of Power Supply, 2020,18(4):200−205. (李宏. 谈我国大功率低频电源的发展[J]. 电源学报, 2020,18(4):200−205. doi: 10.13234/j.issn.2095-2805.2020.4.200
    [21] 孙亚. 单相电渣炉用高功率因数低频电源控制策略及验证研究[D]. 西安: 西安石油大学, 2018.

    Sun Ya. Research on control strategy and verification of high power factor low frequency power supply for single-phase electroslag furnace[D]. Xi’an: Xi’an Shiyou University, 2018.
    [22] 吕鹏. 大吨位电渣炉低频供电关键技术研究[D]. 西安: 西安石油大学, 2017.

    Lv Peng. Research on key technologies of low frequency power supply for large tonnage electroslag furnace[D]. Xi’an: Xi’an Shiyou University, 2017.
    [23] Liang Wei, Li Jing, Shi Chengbin, et al. Study on carbide control of high speed steel[J]. Iron Steel Vanadium Titanium, 2020,41(4):130−138. (梁伟, 李晶, 史成斌, 等. 高速钢的碳化物控制研究[J]. 钢铁钒钛, 2020,41(4):130−138. doi: 10.7513/j.issn.1004-7638.2020.04.024
    [24] Lin Faju. Effect of heat treatment process on liquidus carbide of mc5d cold roll blank[J]. Iron Steel Vanadium Titanium, 2019,40(5):162−168. (林发驹. 热处理工艺对MC5D冷轧辊坯液析碳化物的影响[J]. 钢铁钒钛, 2019,40(5):162−168. doi: 10.7513/j.issn.1004-7638.2019.05.027
    [25] 林建峰. 低频电磁铸造铝锂合金的组织与性能[D]. 沈阳: 东北大学, 2019.

    Lin Jianfeng. Microstructure and properties of Al Li alloy cast by low frequency electromagnetic casting [D]. Shenyang: Northeastern University, 2019.
    [26] He Yuxiao, Zhang Zhiqiang, Bao Lei, et al. Low frequency electromagnetic semi continuous casting of AC52 ingot[J]. Special Casting & Nonferrous Alloys, 2013,33(4):357−360. (和玉晓, 张志强, 宝磊, 等. 低频电磁半连续铸造AC52锭坯[J]. 特种铸造及有色合金, 2013,33(4):357−360. doi: 10.15980/j.tzzz.2013.04.024
    [27] Zuo Yubo, Zhao Zhihao, Zhu Qingfeng, et al. Mechanism of refining microstructure of aluminum alloy by low frequency electromagnetic casting[J]. The Chinese Journal of Nonferrous Metals, 2013,23(1):51−55. (左玉波, 赵志浩, 朱庆丰, 等. 低频电磁铸造细化铝合金组织的机理[J]. 中国有色金属学报, 2013,23(1):51−55.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  32
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-14
  • 刊出日期:  2023-04-30

目录

    /

    返回文章
    返回