Effect of low frequency power supply frequency on liquidus carbides in GCr15 electroslag ingot
-
摘要: 为了进一步提高电渣锭的凝固质量,设计了低频电渣重熔炉,研究了不同频率对电渣锭中液析碳化物的影响。采用扫描电镜观察了液析碳化物的形貌、成分,并在光学显微镜下观察了GCr15轴承钢电渣锭中液析碳化物的尺寸变化。研究结果表明,相比于工频时,低频可以有效降低碳化物数量,特别是对于边部和2/3R处,碳化物数量下降幅度较大,在频率为0.4 Hz时下降幅度最大,分别为71.05%和48.00%。不管是边部、芯部还是2/3R处,低频均能降低液析碳化物的最大尺寸。特别是对边部和2/3R处碳化物的影响最大,边部最大尺寸从工频时的11.64 μm减小至0.4 Hz时的7.39 μm,减小了36.51%;2/3R处最大尺寸从工频时的20.58 μm减小至0.4 Hz时的12.61 μm,减小了38.73%。Abstract: In order to further improve the solidification quality of electroslag ingot, a low frequency electroslag remelting furnace was designed to study the effect of different frequencies on liquid carbides in electroslag ingot. The morphology and composition of liquidated carbides were observed by scanning electron microscopy, and the size change of liquidated carbides was observed and analyzed under an optical microscope. The results show that the number of carbides can be effectively reduced at low frequency compared with that at power frequency, especially at the edge and at the edge of 2/3R where the number of carbides decreases significantly at 0.4 Hz, the maximum decrease amplitude is 71.05% and 48.00%. Whether it is in edge, heart, or 2/3R, low frequency can reduce the maximum size of liquid carbides. Especially for the edge and 2/3R carbides, the maximum size of the edge decreases from 11.64 μm at power frequency to 7.39 μm at 0.4 Hz, which is reduced by 36.51%. The maximum size at 2/3R is reduced by 38.73% from 20.58 μm at power frequency to 12.61 μm at 0.4 Hz.
-
表 1 GCr15轴承钢主要化学成分
Table 1. Main chemical composition of GCr15 bearing steel
% C Mn Si Cr P Al S N 0.99 0.35 0.21 1.47 0.009 0.008 0.001 0.0039 表 2 试验方案
Table 2. Experimental schemes
试验方案 重熔电流/A 重熔电压/V 频率/Hz 周期/s 钢种 1 1800 32 0.1 10 GCr15 2 1800 32 0.4 2.5 GCr15 3 1800 32 1 1 GCr15 4 1800 32 2 0.5 GCr15 5 1800 32 50 0.02 GCr15 表 3 不同频率下液析碳化物尺寸的变化
Table 3. Changes of size of liquidated carbides at different frequencies
频率/Hz 取样位置 最小尺寸/μm 最大尺寸/μm 平均尺寸/μm 50 边部 4.26 11.64 7.06 2/3R处 4.53 20.58 9.08 芯部 5.13 15.42 9.62 2 边部 5.12 14.01 7.00 2/3R处 4.91 16.29 8.34 芯部 3.02 17.00 8.08 1 边部 3.64 10.33 5.36 2/3R处 4.66 18.68 8.45 芯部 3.92 16.87 8.25 0.4 边部 5.72 9.16 7.55 2/3R处 4.30 12.61 7.35 芯部 4.92 13.17 7.31 0.1 边部 3.64 7.39 4.98 2/3R处 4.27 22.67 7.65 芯部 3.45 15.28 8.54 -
[1] 杜刚. 基于电渣重熔GCr15轴承钢中碳化物控制的研究[D]. 北京: 北京科技大学, 2018.Du Gang. Study on carbide control in GCr15 bearing steel based on electroslag remelting[D]. Beijing: Beijing University of Science and Technology, 2018. [2] 薛正良, 朱航宇, 常立忠. 特种熔炼[M]. 北京: 冶金工业出版社, 2018: 80.Xue Zhengliang, Zhu Hangyu, Chang Lizhong. Special smelting [M]. Beijing: Metallurgical Industry Press, 2018: 80. [3] 李正邦. 电渣冶金的理论与实践[M]. 北京: 冶金工业出版社, 2010.Li Zhengbang . Theory and practice of electroslag metallurgy [M]. Beijing: Metallurgical Industry Press, 2010. [4] Li Hong, Yang Yiming, Lv Peng. Development and application of 120 t low frequency electroslag furnace power supply system[J]. Metallurgical Industry Automation, 2017,41(2):40−44,65. (李宏, 杨毅明, 吕鹏. 120 t低频电渣炉电源系统研制及应用[J]. 冶金自动化, 2017,41(2):40−44,65. [5] Li Zhengbang. Development history, current situation and trend of electroslag metallurgy[J]. Journal of Materials and Metallurgy, 2011,10(S1):1−7. (李正邦. 电渣冶金的发展历程、现状及趋势[J]. 材料与冶金学报, 2011,10(S1):1−7. doi: 10.3969/j.issn.1671-6620.2011.z1.001 [6] 余坤. 低频电渣重熔特性的研究[D]. 南昌: 南昌大学, 2019.Yu Kun. Study on the characteristics of low frequency electroslag remelting [D]. Nanchang: Nanchang University, 2019. [7] Du G, Li J, Wang Z B. Control of carbide precipitation during electroslag remelting-continuous rapid solidification of GCr15 steel[J]. Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science, 2017,48(6):2873−2890. doi: 10.1007/s11663-017-1089-3 [8] Qi Y F, Li J, Shi C B, et al. Effect of directional solidification of electroslag remelting on the microstructure and primary carbides in an austenitic hot-work die steel[J]. Journal of Materials Processing Technology, 2017,249(11):32−38. [9] He Bao, Li Jing, Shi Chengbin, et al. Effect of cooling intensity on carbides in H13 steel containing magnesium during electroslag remelting[J]. Chinese Journal of Engineering, 2016,38(12):1720−1727. (贺宝, 李晶, 史成斌, 等. 电渣重熔过程冷却强度对含镁H13钢中碳化物的影响[J]. 工程科学学报, 2016,38(12):1720−1727. [10] Chang Kaihua, Xu Tao, Zhu Chunli, et al. Effect of electroslag remelting on oxygen content and inclusions in GCr15 bearing steel[J]. Iron Steel Vanadium Titanium, 2021,42(4):175−181. (常凯华, 徐涛, 朱春丽, 等. 电渣重熔对GCr15轴承钢中氧含量及夹杂物的影响[J]. 钢铁钒钛, 2021,42(4):175−181. doi: 10.7513/j.issn.1004-7638.2021.04.029 [11] 陈锟. 控制Cr5钢冷轧辊坯质量的锻造变形工艺研究[D]. 上海: 上海大学, 2011: 29-32.Chen Kun. Study on forging deformation process for controlling the quality of Cr5 steel cold roll blank [D]. Shanghai: Shanghai University, 2011: 29-32. [12] Yu Ruizhi, Liu Hongbo. Effect of heating temperature and time on dissolution and diffusion of liquid precipitation carbides in MC5 roll steel[J]. Special Steel Technology, 2013,19(2):31−34,51. (于瑞芝, 刘洪波. 加热温度与时间对MC5 轧辊钢液析碳化物溶解扩散的影响[J]. 特钢技术, 2013,19(2):31−34,51. doi: 10.3969/j.issn.1674-0971.2013.02.009 [13] Chang Lizhong, Gao Gang, Shi Xiaofang, et al. Effect of magnesium on liquidus carbide in GCr15 bearing steel[J]. The Chinese Journal of Process Engineering, 2019,19(2):362−369. (常立忠, 高岗, 施晓芳, 等. 镁对GCr15轴承钢中液析碳化物的影响[J]. 过程工程学报, 2019,19(2):362−369. doi: 10.12034/j.issn.1009-606X.218227 [14] Sui Tieliu. Overview of electroslag remelting abroad and development direction of electroslag remelting in China[J]. Journal of Materials and Metallurgy, 2011,10(S1):21−28. (隋铁流. 国外电渣重熔概况及我国电渣重熔的发展方向[J]. 材料与冶金学报, 2011,10(S1):21−28. doi: 10.3969/j.issn.1671-6620.2011.z1.004 [15] Zhang B, Chen K, Wang R, et al. Physical modelling of splashing triggered by the gas jet of an oxygen lance in a converter[J]. Metals, 2019,9(4):409. doi: 10.3390/met9040409 [16] 杨晓蔚. 由GCr15钢的化学成分设计看轴承钢的研发准则[J]. 轴承, 2022(12): 28−31.Yang Xiaowei. Research and development criteria of bearing steel from the chemical composition design of GCr15 steel[J]. Bearing, 2022(12): 28-31. [17] Yin Fuxing, Su Ming, Ji Fa, et al. Effect of melting rate on microsegregation and primary MC carbides in M2 high-speed steel during electroslag remelting[J]. China Foundry, 2021,18(3):163−169. doi: 10.1007/s41230-021-9009-1 [18] Li Xing, Jiang Zhouhua, Geng Xin, et al. Numerical simulation of a new electroslag remelting technology with current conductive stationary mold[J]. Applied Thermal Engineering, 2019,147:736−746. doi: 10.1016/j.applthermaleng.2018.10.086 [19] Chang Lizhong, Li Zhengbang. Control method of metal solidification in electroslag remelting process[J]. Steelmaking, 2007,(4):56−58,62. (常立忠, 李正邦. 电渣重熔过程中金属凝固的控制方法[J]. 炼钢, 2007,(4):56−58,62. doi: 10.3969/j.issn.1002-1043.2007.04.015 [20] Li Hong. On the development of high-power low-frequency power supply in China[J]. Journal of Power Supply, 2020,18(4):200−205. (李宏. 谈我国大功率低频电源的发展[J]. 电源学报, 2020,18(4):200−205. doi: 10.13234/j.issn.2095-2805.2020.4.200 [21] 孙亚. 单相电渣炉用高功率因数低频电源控制策略及验证研究[D]. 西安: 西安石油大学, 2018.Sun Ya. Research on control strategy and verification of high power factor low frequency power supply for single-phase electroslag furnace[D]. Xi’an: Xi’an Shiyou University, 2018. [22] 吕鹏. 大吨位电渣炉低频供电关键技术研究[D]. 西安: 西安石油大学, 2017.Lv Peng. Research on key technologies of low frequency power supply for large tonnage electroslag furnace[D]. Xi’an: Xi’an Shiyou University, 2017. [23] Liang Wei, Li Jing, Shi Chengbin, et al. Study on carbide control of high speed steel[J]. Iron Steel Vanadium Titanium, 2020,41(4):130−138. (梁伟, 李晶, 史成斌, 等. 高速钢的碳化物控制研究[J]. 钢铁钒钛, 2020,41(4):130−138. doi: 10.7513/j.issn.1004-7638.2020.04.024 [24] Lin Faju. Effect of heat treatment process on liquidus carbide of mc5d cold roll blank[J]. Iron Steel Vanadium Titanium, 2019,40(5):162−168. (林发驹. 热处理工艺对MC5D冷轧辊坯液析碳化物的影响[J]. 钢铁钒钛, 2019,40(5):162−168. doi: 10.7513/j.issn.1004-7638.2019.05.027 [25] 林建峰. 低频电磁铸造铝锂合金的组织与性能[D]. 沈阳: 东北大学, 2019.Lin Jianfeng. Microstructure and properties of Al Li alloy cast by low frequency electromagnetic casting [D]. Shenyang: Northeastern University, 2019. [26] He Yuxiao, Zhang Zhiqiang, Bao Lei, et al. Low frequency electromagnetic semi continuous casting of AC52 ingot[J]. Special Casting & Nonferrous Alloys, 2013,33(4):357−360. (和玉晓, 张志强, 宝磊, 等. 低频电磁半连续铸造AC52锭坯[J]. 特种铸造及有色合金, 2013,33(4):357−360. doi: 10.15980/j.tzzz.2013.04.024 [27] Zuo Yubo, Zhao Zhihao, Zhu Qingfeng, et al. Mechanism of refining microstructure of aluminum alloy by low frequency electromagnetic casting[J]. The Chinese Journal of Nonferrous Metals, 2013,23(1):51−55. (左玉波, 赵志浩, 朱庆丰, 等. 低频电磁铸造细化铝合金组织的机理[J]. 中国有色金属学报, 2013,23(1):51−55. -