留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高强度钢A100本构方程与动态再结晶行为

林发驹 李雄 吴铖川

林发驹, 李雄, 吴铖川. 超高强度钢A100本构方程与动态再结晶行为[J]. 钢铁钒钛, 2023, 44(2): 187-193. doi: 10.7513/j.issn.1004-7638.2023.02.027
引用本文: 林发驹, 李雄, 吴铖川. 超高强度钢A100本构方程与动态再结晶行为[J]. 钢铁钒钛, 2023, 44(2): 187-193. doi: 10.7513/j.issn.1004-7638.2023.02.027
Lin Faju, Li Xiong, Wu Chengchuan. Constitutive equation and dynamic recrystallization behavior of ultra high strength steel A100[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 187-193. doi: 10.7513/j.issn.1004-7638.2023.02.027
Citation: Lin Faju, Li Xiong, Wu Chengchuan. Constitutive equation and dynamic recrystallization behavior of ultra high strength steel A100[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 187-193. doi: 10.7513/j.issn.1004-7638.2023.02.027

超高强度钢A100本构方程与动态再结晶行为

doi: 10.7513/j.issn.1004-7638.2023.02.027
详细信息
    作者简介:

    林发驹,1985年出生,男,本科,高级工程师,主要从事钢铁材料及锻造工艺研究工作,E-mail:3160094502@qq.com

  • 中图分类号: TF76

Constitutive equation and dynamic recrystallization behavior of ultra high strength steel A100

  • 摘要: 使用Gleeble-3500热模拟试验机对A100超高强度钢在应变速率为0.01~10 s−1、变形量为 63.3% 、变形温度为850~1200 ℃条件下的流变应力行为进行了试验研究,并结合微观组织分析了不同变形条件下动态再结晶行为。结果表明:A100钢热压缩变形中流变应力随温度的增加而降低,随应变速率的增加而增加。在850 ℃变形时主要发生动态回复,在变形温度为900~1200 ℃、应变速率为0.01~10 s−1均发生动态再结晶。基于Arrhenius双曲正弦模型,利用线性回归方法建立了高强钢A100的本构方程,为A100钢的数值模拟和热加工工艺的制定提供了理论基础。
  • 图  1  变形温度一定、不同变形速率的真实应力-应变曲线

    Figure  1.  True stress-strain curve of samples deformed at different temperatures and strain rates

    图  2  变形温度850 ℃、变形速率1 s−1的金相组织

    Figure  2.  Metallographic structure of sample after deformation at 850 ℃ and deformation rate of 1 s−1

    图  3  不同变形温度下热压缩A100钢的显微组织(${\dot{\varepsilon }}$=10 s−1)

    Figure  3.  Microstructure of hot compressed A100 steel at different deformation temperatures ($\dot {\varepsilon }$=10 s−1)

    图  4  变形速率一定、不同变形温度的真实应力-应变曲线

    Figure  4.  True stress-strain curves of samples deformed at different temperatures and strain rates

    图  5  不同变形温度下热压缩A100 钢的显微组织

    Figure  5.  Microstructure of hot compressed A100 steel at different deformation temperatures

    图  6  应变速率 $\dot {\textit{ε}}$ 与峰值应力$ {{\textit{σ}}_{\text{p}}} $的关系

    Figure  6.  Relationship between strain rate and peak stress

    图  7  ln$\dot {\textit{ε}}$与lnsinh (ασp)之间的关系

    Figure  7.  Relationship between ln$\dot {\textit{ε}}$ and lnsinh (ασp)

    图  8  lnsinh (ασp)与$\dfrac{{\text{1}}}{{{T}}}$之间的关系

    Figure  8.  Relationship between lnsinh (ασp) and $\dfrac{{\text{1}}}{{{T}}}$

    图  9  Z 参数与峰值应力σp之间的关系

    Figure  9.  Relationship between Z parameter and peak stress σp

  • [1] Li Jie, Li Zhi, Yan Minghao. Development of high alloy ultra high strength steel[J]. Materials Engineering, 2007,4:61−65. (李杰, 李志, 颜鸣嗥. 高合金超高强度钢的发展[J]. 材料工程, 2007,4:61−65. doi: 10.3969/j.issn.1001-4381.2007.08.015
    [2] Garrison W M. Ultrahigh-strength steels for aerospace applications[J]. JOM, 1990,42(5):20−24. doi: 10.1007/BF03220942
    [3] Little C D, Machmeier P M. High strength fracture resistant weldable steels: USA Patent, 4, 076, 525[P]. 1978.
    [4] Hemphill R M, Wert D E. High strength, high fracture toughness alloy: USA Patent, 5, 268, 044[P] . 1993.
    [5] Caffrey T J. Combined strength and toughness characterize new aircraft alloy[J]. Advanced Materials & Processes, 1992,142(3):47−50.
    [6] Zhao Zhenye. Study on secondary hardening in ultra-high strength steel[J]. Journal of Aeronautical Materials, 2002,22(4):46−55. (赵振业. 超高强度钢中的二次硬化现象研究[J]. 航空材料学报, 2002,22(4):46−55. doi: 10.3969/j.issn.1005-5053.2002.04.010
    [7] 刘文义. 7085铝合金热加工力学行为及微观组织演变规律研究[D]. 重庆: 重庆大学, 2014.

    Liu Wenyi. Research on mechanical property and microstructure evolution in hot working of 7085 aluminum alloy[D]. Chongqing: Chongqing University, 2014.
    [8] 张世伟, 杨明, 梁益龙, 等, 20 CrNi2 Mo 钢高温变形的本构方程与动态再结晶行为[J]. 钢铁, 2017, 52(8): 97-106.

    Zhang Shiwei, Yang Ming, Liang Yilong, et al. Constitutive equation and dynamic recrystallization behavior of 20CrNi2Mo steel during high temperature deformation[J]. Iron &Steel, 2017, 52 (8): 97-106.
    [9] Stewart G R, Jonas J J, Montheillet F. Kinetics and critical con-ditions for the initiation of dynamic recrystallization in 304 stainless steel[J]. ISIJ International, 2004,44(9):1581. doi: 10.2355/isijinternational.44.1581
    [10] Lee Y C, Hwang E, Shih Y P. A combined approach to fuzzy model identification[J]. Systems Man & Cybernetics IEEE Transactions on, 1994,24(5):736−744.
    [11] Chen Xuewen, Xiao Xiao, Huang Tao, et al. Thermal deformation behavior and constitutive equation of CR8 steel[J]. Journal of Material Heat Treatment, 2017,38(11):120−124. (陈学文, 肖晓, 皇涛, 等. Cr8钢的热变形行为及本构方程[J]. 材料热处理学报, 2017,38(11):120−124.
    [12] Liu Yong, Zhao Haitao, Chen Hongwei, et al. DIN 1.2738 analysis of hot deformation and hot working diagram of plastic mold steel[J]. Special Steel, 2020,41(1):16−20. (刘泳, 赵海涛, 陈红卫, 等. DIN 1.2738塑料模具钢热变形及热加工图分析[J]. 特殊钢, 2020,41(1):16−20. doi: 10.3969/j.issn.1003-8620.2020.01.004
    [13] 侯丹丹. AerMet100 超高强度钢高温变形行为研究[D]. 秦皇岛: 燕山大学, 2015: 10-13.

    Hou Dandan. Research on high temperature deformation behavior of AerMet100 ultra high strength steel[D]. Qinhuangdao: Yanshan University, 2015: 10-13.
    [14] Takuda H, Fujimoto H, Hatta N. Modeling of flowing stress of Mg-Al-Zn alloys at elevated temperatures[J]. Journal of Materials Processig Technology, 1998,80-81(8):513−516.
    [15] Zener C, Hollomon J H. Problems in non-elasticdeformation of metals[J]. J. Appl. Phys, 1946,17(2):38−43.
    [16] Jonas J J, Sellars C M, Pegart W J M. Strength and structure under hot working conditions[J]. Tegar Int Metall Reviews, 1969,14(130):1−24.
  • 加载中
图(9)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  28
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-01
  • 刊出日期:  2023-04-30

目录

    /

    返回文章
    返回