留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焦炭粒度对钛渣冶炼影响研究

李凯茂 肖军 马勇 宋兵 邱淑兴

李凯茂, 肖军, 马勇, 宋兵, 邱淑兴. 焦炭粒度对钛渣冶炼影响研究[J]. 钢铁钒钛, 2023, 44(3): 39-44. doi: 10.7513/j.issn.1004-7638.2023.03.006
引用本文: 李凯茂, 肖军, 马勇, 宋兵, 邱淑兴. 焦炭粒度对钛渣冶炼影响研究[J]. 钢铁钒钛, 2023, 44(3): 39-44. doi: 10.7513/j.issn.1004-7638.2023.03.006
Li Kaimao, Xiao Jun, Ma Yong, Song Bing, Qiu Shuxing. Study on the effect of coke particle size on titanium slag smelting[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 39-44. doi: 10.7513/j.issn.1004-7638.2023.03.006
Citation: Li Kaimao, Xiao Jun, Ma Yong, Song Bing, Qiu Shuxing. Study on the effect of coke particle size on titanium slag smelting[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 39-44. doi: 10.7513/j.issn.1004-7638.2023.03.006

焦炭粒度对钛渣冶炼影响研究

doi: 10.7513/j.issn.1004-7638.2023.03.006
基金项目: 国家自然科学基金青年基金项目(52104323)。
详细信息
    作者简介:

    李凯茂,1984年出生,男,山西大同人,高级工程师,长期从事钛渣冶炼相关研究,E-mail:ybni610@126.com

  • 中图分类号: TF823

Study on the effect of coke particle size on titanium slag smelting

  • 摘要: 根据颗粒在流体中自由沉降运动特点,通过理论计算得到连续加料冶炼钛渣条件下被带出焦炭颗粒粒径最大值为0.06 mm。结合工业上应用情况,得到试验用焦炭粒度范围2~8 mm。基于此,考察了焦炭粒度对钛渣冶炼的影响,结果表明,在功率不变条件下,焦炭粒度偏大、反应相对滞后引起冶炼过程烟气温度、CO浓度波动大,冶炼初期存在电极位置快速上升等问题,导致吨渣焦耗、百吨料耗时、吨渣电耗比基准期分别多24 kg、0.18 h、52.07 kWh;相较而言,功率由17.67 MW/h提升至18.14 MW/h(提升0.47 MW/h)时,热力学和动力学条件得到改善,促进焦炭充分反应,消除炉内残碳量,使冶炼更加稳定,同时吨渣焦耗、吨渣电耗比“未提升功率的试验期”分别降低了26 kg、128.12 kWh;焦炭粒度分布变窄且均匀,有利于钛渣冶炼过程和质量稳定控制,而功率提升可有效降低焦炭粒度相对偏大对钛渣冶炼的不利影响。
  • 图  1  冶炼开始阶段电极位置变化

    Figure  1.  Change of electrode position at the beginning of smelting

    图  2  铁水中C含量变化趋势

    Figure  2.  Change trend of C content in molten iron

    表  1  酸溶性钛渣的成分指标

    Table  1.   The component index of acid-soluble titanium slag %

    ∑TiO2TiO2FeOTi3O5
    74.5557.035.7816.35
    下载: 导出CSV

    表  2  钛精矿主要化学成分

    Table  2.   Main chemical composition of titanium concentrate %

    TiO2FeOFe2O3SiO2CaOMgOS
    47.7336.335.332.530.7653.580.18
    下载: 导出CSV

    表  3  焦炭成分及粒度指标

    Table  3.   Coke composition and grain size index %

    类别FcdAdVdS占比
    +8 mm+2 mm~8 mm−2 mm
    基准期83.9514.491.410.747.0452.5040.46
    试验期83.5314.941.400.705.5090.573.93
    下载: 导出CSV

    表  4  纯气体和混合气体流量及体积百分数指标

    Table  4.   Flow and volume percent indexes of pure gas and mixed gas

    气体流量/(m3·h−1)体积百分数/ %摩尔质量/(g·mol−1)
    CO1636.7281.8628
    CH426.581.3316
    CO286.144.3144
    N2250.0012.5028
    混合气体1999.44100.0028.53
    下载: 导出CSV

    表  5  纯气体和混合气体粘度

    Table  5.   Viscosity of pure gas and mixed gas

    气体组分CK温度范围/K高温下气体
    粘度/(Pa·s)
    CO145.442415.21555273~13004.93×10−5
    CO2276.205416.72158238~9734.06×10−5
    CH4166.386810.1432877~10502.84×10−5
    N2192.860815.53529871~15525.44×10−5
    O2237.923619.15405758~17006.93×10−5
    H2151.83407.396744321~10602.11×10−5
    混合气体4.93×10−5
    下载: 导出CSV

    表  6  钛渣电炉主要技术参数

    Table  6.   Main technical parameters of titanium slag electric furnace

    变压器容量/MW炉膛直径/mm挂渣层厚度/mm电极直径/mm出渣口数量/个出铁口数量/个煤气回收工艺
    25.598001000100011干法除尘
    下载: 导出CSV

    表  7  电极位置标准差及标准差的方差

    Table  7.   Standard deviation of electrode position and variance of standard deviation

    类别标准差平均值/mm标准差的方差/mm2
    基准期349.495340.54
    试验期1331.134043.09
    试验期2325.921743.48
    下载: 导出CSV

    表  8  烟气温度及CO浓度

    Table  8.   Flue gas temperature and CO concentration

    类别烟气温度CO浓度
    平均值
    / ℃
    标准差
    平均值
    标准差
    的方差
    平均值
    /%
    标准差
    平均值
    标准差
    的方差
    基准期331.2055.5456.5133.7813.912.50
    试验期1335.7250.10157.4931.6812.763.32
    试验期2326.2941.9633.3934.6012.611.97
    下载: 导出CSV

    表  9  主要冶炼指标

    Table  9.   Main smelting indexes

    类别吨渣焦耗/t功率/(MW·h−1)百吨料耗时/h吨渣电耗/kWh
    基准期0.14317.647.152287.46
    试验期10.16717.677.332339.53
    试验期20.14118.146.802211.41
    下载: 导出CSV
  • [1] Han Fengxia, Lei Ting, Zhou Lin, et al. Ratio of anthracite to ilmenite of titanium slag smelted by 30MVA DC arc furnace[J]. Chinese Journal of Rare Metals, 2012,36(2):298−303. (韩丰霞, 雷霆, 周林. 30MVA直流电弧炉冶炼钛渣配碳比研究[J]. 稀有金属, 2012,36(2):298−303.

    Han Fengxia, Lei Ting, Zhou Lin, et al. Ratio of anthracite to ilmenite of titanium slag smelted by 30 MVA DC arc furnace[J]. Chinese Journal of Rare Metals, 2012, 36(2): 298-303.
    [2] Ma Xiang, Han Fengxia, Lei Ting. Factor of reductant carbon during titanium slag smelting in closed direct current arc furnace[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2013,38(5):6−10. (马翔, 韩丰霞, 雷霆. 密闭直流电弧炉钛渣生产还原剂碳因素分析[J]. 昆明理工大学学报(自然科学版), 2013,38(5):6−10.

    Ma Xiang, Han Fengxia, Lei Ting. Factor of reductant carbon during titanium slag smelting in closed direct current arc furnace[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2013, 38(5): 6-10.
    [3] Xiao Jun. Study on the influence of different reductants on titanium slag of Panzhihua titanium concentrate smelting[J]. China Nonferrous Metallurgy, 2018,47(2):35−38. (肖军. 不同还原剂对攀枝花钛精矿冶炼钛渣影响研究[J]. 中国有色冶金, 2018,47(2):35−38.

    Xiao Jun. Study on the influence of different reductants on titanium slag of Panzhihua titanium concentrate smelting[J]. China Nonferrous Metallurgy, 2018, 47(2): 35-38.
    [4] Qiu Shuxing, Xiao Jun, Li Kaimao, et al. Impact of Panjiang coke on titanium slag smelting with Panzhihua titanium concentrate[J]. China Nonferrous Metallurgy, 2022,51(2):24−29. (邱淑兴, 肖军, 李凯茂, 等. 盘江焦炭对攀枝花钛精矿冶炼钛渣影响研究[J]. 中国有色冶金, 2022,51(2):24−29.

    Qiu Shuxing, Xiao Jun, Li Kaimao, et al. Impact of Panjiang coke on titanium slag smelting with Panzhihua titanium concentrate[J]. China Nonferrous Metallurgy, 2022, 51(2): 24-29.
    [5] Li Jie, Song Canyang, Li Xiaojing, et al. Research and application of combustibility and reactivity of pulverized coal injected in blast furnace[J]. China Metallurgy, 2019,29(1):8−13. (李杰, 宋灿阳, 李小静, 等. 高炉喷吹煤粉燃烧性与反应性的研究与应用[J]. 中国冶金, 2019,29(1):8−13.

    Li Jie, Song Canyang, Li Xiaojing, et al. Research and application of combustibility and reactivity of pulverized coal injected in blast furnace[J]. China Metallurgy, 2019, 29(1): 8-13.
    [6] Gu Longjian, Li Chongchao, Liang Surong, et al. Effect of different carburizing agents on carburizing and its influence on steel quality[J]. Iron Steel Vanadium Titanium, 1992,13(2):18−26. (古隆建, 礼重超, 梁素荣, 等. 不同增碳剂增碳效果及对钢质量影响的研究[J]. 钢铁钒钛, 1992,13(2):18−26.

    Gu Longjian, Li Chongchao, Liang Surong, et al. Effect of different carburizing agents on carburizing and its influence on steel quality[J]. Iron Steel Vanadium Titanium, 1992, 13(2): 18-26.
    [7] Correspondent. Antway helps Shenhua Ningxia coal to liquids project with an annual output of 4 million t/a run at full capacity[J]. Chemical Fertilizer Design, 2018,56(2):14. (本刊通讯员. 安特威助力神华宁煤年产400万t/a煤制油项目满负荷运行[J]. 化肥设计, 2018,56(2):14.

    Correspondent. Antway helps Shenhua Ningxia coal to liquids project with an annual output of 4 million t/a run at full capacity[J]. Chemical Fertilizer Design, 2018, 56(2): 14.
    [8] Li Kaimao. Discussion on recycling of gas from titanium slag electric furnace[J]. Light Metals, 2014,(12):39−41. (李凯茂. 钛渣电炉煤气回收利用的探讨[J]. 轻金属, 2014,(12):39−41.

    Li Kaimao. Discussion on recycling of gas from titanium slag electric furnace[J]. Light Metals, 2014(12): 39-41.
    [9] Ma Peisheng, Jiang Biyun, Zhang Jianhou. Critical assessment of viscosity and its correlation with temperature for gaseous substances under normal pressure[J]. Journal of Chemical Industry and Engineering (China), 1981,(3):193−205. (马沛生, 江碧云, 张建侯. 气体常压粘度数据的评定和对温度的关联[J]. 化工学报, 1981,(3):193−205.

    Ma Peisheng, Jiang Biyun, Zhang Jianhou. Critical assessment of viscosity and its correlation with temperature for gaseous substances under normal pressure[J]. Journal of Chemical Industry and Engineering (China), 1981 (3): 193-205.
    [10] Tian Linan. Viscosity calculation of pure gas, gas mixture and liquid[J]. Chemical Fertilizer Design, 1997,(6):9−13. (田立楠. 纯气体、混合气体及液体粘度的计算[J]. 化肥设计, 1997,(6):9−13.

    Tian Linan. Viscosity calculation of pure gas, gas mixture and liquid[J]. Chemical Fertilizer Design, 1997(6): 9-13.
    [11] Li Kaimao. Economic analyzing on slag grade and power consumption for smelting Panzhihua titanium concentrates[J]. Light Metals, 2015,(10):46−50. (李凯茂. 攀枝花钛精矿冶炼钛渣的经济品位及电耗分析[J]. 轻金属, 2015,(10):46−50.

    Li Kaimao. Economic analyzing on slag grade and power consumption for smelting Panzhihua titanium concentrates[J]. Light Metals, 2015(10): 46-50.
  • 加载中
图(2) / 表(9)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  14
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-06
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回