留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预应变对工业纯钛TA2焊接接头拉伸力学性能的影响

赵青 常乐 周昌玉 浦江 郑逸翔 王志成 王步美

赵青, 常乐, 周昌玉, 浦江, 郑逸翔, 王志成, 王步美. 预应变对工业纯钛TA2焊接接头拉伸力学性能的影响[J]. 钢铁钒钛, 2023, 44(3): 68-74. doi: 10.7513/j.issn.1004-7638.2023.03.010
引用本文: 赵青, 常乐, 周昌玉, 浦江, 郑逸翔, 王志成, 王步美. 预应变对工业纯钛TA2焊接接头拉伸力学性能的影响[J]. 钢铁钒钛, 2023, 44(3): 68-74. doi: 10.7513/j.issn.1004-7638.2023.03.010
Zhao Qing, Chang Le, Zhou Changyu, Pu Jiang, Zheng Yixiang, Wang Zhicheng, Wang Bumei. Effects of pre-strain on tensile mechanical properties of commercially pure titanium TA2 welded joint[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 68-74. doi: 10.7513/j.issn.1004-7638.2023.03.010
Citation: Zhao Qing, Chang Le, Zhou Changyu, Pu Jiang, Zheng Yixiang, Wang Zhicheng, Wang Bumei. Effects of pre-strain on tensile mechanical properties of commercially pure titanium TA2 welded joint[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 68-74. doi: 10.7513/j.issn.1004-7638.2023.03.010

预应变对工业纯钛TA2焊接接头拉伸力学性能的影响

doi: 10.7513/j.issn.1004-7638.2023.03.010
基金项目: 国家自然科学基金(51905260)。
详细信息
    作者简介:

    赵青,1984年出生,女,硕士研究生,高级工程师,研究方向为工程与材料的研究、特种设备检验检测,E-mail:zhao_qing@163.com

  • 中图分类号: TF823

Effects of pre-strain on tensile mechanical properties of commercially pure titanium TA2 welded joint

  • 摘要: 以工业纯钛TA2焊接接头为研究对象,开展了预应变后的室温拉伸力学性能测试。结果表明,预应变后应力应变曲线上升,屈服强度及抗拉强度随着预应变量的增加而增加。综合考虑预应变量及应变速率影响,建立了预应变后材料强度的经验表达式。根据Hollomon本构方程,研究了预应变后应变速率敏感性指数及应变强化指数的变化,确定了预应变试样的拉伸本构方程。断口观察表明,预应变后材料延伸率下降,断口收缩率及韧窝尺寸均下降。
  • 图  1  拉伸试样尺寸(单位:mm)

    Figure  1.  Dimension of tensile specimen

    图  2  TA2焊接接头微观组织

    Figure  2.  Microstructure of TA2 weld joint

    图  3  应力应变曲线

    Figure  3.  Stress-strain curves (effect of pre-strain(a) and strain rate(b))

    图  4  强度随应变速率的变化

    Figure  4.  Variation of strength parameter with strain rate (yield strength(a) and tensile strength(b))

    图  5  强度随预应变的变化

    Figure  5.  Variation of strength parameter with pre-strain (yield strength(a) and tensile strength(b))

    图  6  强度预测值与试验结果对比

    Figure  6.  Comparison between the predicted strength parameter and experimental results

    图  7  不同试样预测值与试验值对比

    Figure  7.  Comparison between prediction results and experiment results of different samples

    图  8  2%预应变试样在应变速率为0.0005/s下拉伸断裂后的断口

    Figure  8.  Micrographs of fractured surfaces of 2% pre-strained sample at the strain rate of 0.0005/s

    图  9  预应变试样的断口形貌及其中间区域放大

    (a)(a1)2%预应变,应变速率0.0005/s;(b)(b1)4%预应变,应变速率0.0005/s;(c)(c1)8%预应变,应变速率0.0005/s;(d)(d1)2%预应变,应变速率0.005/s;(e)(e1)4%预应变,应变速率0.005/s;(f)(f1)8%预应变,应变速率0.005/s

    Figure  9.  Fractured surfaces of pre-strained samples and enlarged view of central region

    表  1  不同预应变下不同应变的应变速率敏感性指数m

    Table  1.   Strain rate sensitivity index m at different strain points under different pre-strains

    应变/%应变速率敏感指数m
    预应变ε=2%预应变ε=4%
    10.01490.0336
    20.01260.0308
    30.01220.0293
    40.01690.028
    均值0.01410.0304
    下载: 导出CSV

    表  2  不同预应变下不同应变速率的应变硬化指数n

    Table  2.   Strain hardening index n under different pre-strains and different strain rates

    应变速率/s−1应变硬化指数n
    预应变ε=2%预应变ε=4%
    0.0050.06440.036
    0.00050.05780.0274
    0.000050.0670.0175
    均值0.0630.027
    下载: 导出CSV

    表  3  不同预应变下不同应变速率的强度系数K

    Table  3.   Strengthening coefficient K values under different strain rates and pre-strains

    应变速率/s−1K
    预应变ε=2%预应变ε=4%
    0.005675.78697.8
    0.0005693.79704.7
    0.00005677.79707.92
    均值682.5703.46
    下载: 导出CSV
  • [1] Chen Y, Zheng S, Zhou J, et al. Influence of H2S interaction with prestrain on the mechanical properties of high-strength X80 steel[J]. International Journal of Hydrogen Energy, 2016,41(24):10412−10420. doi: 10.1016/j.ijhydene.2016.01.144
    [2] Zhang Xiaoyong, Bi Zongyue, Gao Huilin, et al. Prestrain embrittlement of X80 large deformation pipeline steel[J]. Welded Pipe and Tube, 2013,8:12−16. (张骁勇, 毕宗岳, 高惠临, 等. X80大变形管线钢的预应变脆化[J]. 焊管, 2013,8:12−16. doi: 10.3969/j.issn.1001-3938.2013.06.002

    Zhang Xiaoyong, Bi Zongyue, Gao Huilin, et al. Prestrain embrittlement of X80 large deformation pipeline steel[J]. Welded Pipe and Tube, 2013, 8: 12-16 doi: 10.3969/j.issn.1001-3938.2013.06.002
    [3] Hu Hanjiang, Zhao Aimin, Yin Zhukai, et al. Effect of pre-strain on mechanical properties and hardening behavior of TRIP steel[J]. Transactions of Materials and Heat Treatmet, 2016,37(5):128−132. (胡汉江, 赵爱民, 印珠凯, 等. 预应变对TRIP钢力学性能及硬化行为的影响[J]. 材料热处理学报, 2016,37(5):128−132. doi: 10.13289/j.issn.1009-6264.2016.05.022

    Hu Hanjiang, Zhao Aimin, Yin Zhukai, et al. Effect of pre-strain on mechanical properties and hardening behavior of TRIP steel[J]. Transactions of Materials and Heat Treatmet, 2016, 37(5): 128-132 doi: 10.13289/j.issn.1009-6264.2016.05.022
    [4] Mao Bowen, Sun Xiaoyu, Wang Wurong, et al. Effect of pre-strain and strain rates on mechanical properties of HC340LA high strength low alloy steel[J]. Journal of Plasticity Engineering, 2014,1:7−12. (毛博文, 孙晓屿, 王武荣, 等. 预应变和应变速率对HC340LA低合金高强钢力学性能的影响[J]. 塑性工程学报, 2014,1:7−12. doi: 10.3969/j.issn.1007-2012.2014.06.002

    Mao Bowen, Sun Xiaoyu, Wang Wuyong, et al. Effect of pre-strain and strain rates on mechanical properties of HC340 LA high strength low alloy steel[J]. Journal of Plasticity Engineering, 2014, 1: 7-12 doi: 10.3969/j.issn.1007-2012.2014.06.002
    [5] Ma Z C, Zhao H W, Hu X L, et al. Influences of tensile pre-strain and bending pre-deflection on bending and tensile behaviors of an extruded AZ31B magnesium alloy[J]. Materials and Design, 2014,64(14):566−572.
    [6] Liu Xiaoning, Yang Fan, Liu Ceng, et al. Pre-strain effect evaluation of austenitic stainless steel[J]. Journal of Mechanical Strength, 2019,41(1):104−109. (刘小宁, 杨帆, 刘岑, 等. 奥氏体不锈钢预应变效果评价[J]. 机械强度, 2019,41(1):104−109. doi: 10.16579/j.issn.1001.9669.2019.01.018

    Liu Xiaoning, Yang Fan, Liu Ceng, et al. Pre-strain effect evaluation of austenitic stainless steel[J]. Journal of Mechanical Strength, 2019, 41(1): 104-109 doi: 10.16579/j.issn.1001.9669.2019.01.018
    [7] Zheng Jinyang, Li Yaxian, Xu Ping. Influence factors of mechanical property for strain strengthening austenitic stainless steel[J]. Journal of PLA University of Science and Technology(Natural Science Edition), 2011,5:512−519. (郑津洋, 李雅娴, 徐平. 应变强化用奥氏体不锈钢力学性能影响因素[J]. 解放军理工大学学报, 2011,5:512−519.

    Zheng Jinyang, Li Yaxian, Xu Ping. Influence factors of mechanical property for strain strengthening austenitic stainless steel[J]. Journal of PLA University of Science and Technology(Natural Science Edition), 2011, 5: 512-519
    [8] Han Yu, Zhou Wei, Xu Ye. Study on the deformation law of cold-stretching for austenitic stainless steel pressure vessel[J]. Journal of Mechanical Strength, 2022,44(2):409−415. (韩豫, 周微, 徐晔. 应变强化奥氏体不锈钢压力容器的变形规律研究[J]. 机械强度, 2022,44(2):409−415. doi: 10.16579/j.issn.1001.9669.2022.02.021

    Han Yu, Zhou Wei, Xu Ye. Study on the deformation law of cold-stretching for austenitic stainless steel pressure vessel[J]. Journal of Mechanical Strength, 2022, 44(2): 409-415 doi: 10.16579/j.issn.1001.9669.2022.02.021
    [9] Chen Xiaoning, Zhou Jijun. Study on strain strengthened bearing capacity of austenitic stainless steel pressure vessels[J]. China Plant Engineering, 2017,4:173−174. (陈小宁, 周吉军. 奥氏体不锈钢压力容器的应变强化承载能力研究[J]. 中国设备工程, 2017,4:173−174. doi: 10.3969/j.issn.1671-0711.2017.19.080

    Chen Xiaoning, Zhou Jijun. Study on strain strengthened bearing capacity of austenitic stainless steel pressure vessels[J]. China Plant Engineering, 2017, 4: 173-174 doi: 10.3969/j.issn.1671-0711.2017.19.080
    [10] Xu Guodong, Wang Guisheng. Development of titanium and its industry[J]. Chinese Journal of Rare Metals, 2009,33:903−912. (许国栋, 王桂生. 钛金属和钛产业的发展[J]. 稀有金属, 2009,33:903−912. doi: 10.3969/j.issn.0258-7076.2009.06.028

    Xu Guodong, Wang Guisheng. Development of titanium and its industry[J]. Chinese Journal of Rare Metals, 2009, 33: 903-912 doi: 10.3969/j.issn.0258-7076.2009.06.028
    [11] Chang Le, Peng Jian, Zhou Changyu, et al. Fields-backofen and a modified Johnson-Cook model for CP-Ti at ambient and intermediate temperature[J]. Rare Metal Materials and Engineering, 2017,46(7):1803−1809. doi: 10.1016/S1875-5372(17)30170-4
    [12] Lu L, Li J, Su C Y, et al. Research on fatigue crack growth behavior of commercial pure titanium base metal and weldment at different temperatures[J]. Theoretical and Applied Fracture Mechanics, 2019,100:215−224. doi: 10.1016/j.tafmec.2019.01.017
    [13] Zhao Qing, Chang Le, Zheng Yixiang, et al. Tensile mechanical properties and constitutive model of commercial pure titanium TA2 welded joints at medium-low temperature[J]. Iron Steel Vanadium Titanium, 2022,43(5):81−89. (赵青, 常乐, 郑逸翔, 等. TA2工业纯钛焊接接头中低温拉伸力学性能及本构模型[J]. 钢铁钒钛, 2022,43(5):81−89. doi: 10.7513/j.issn.1004-7638.2022.05.012

    Zhao Qing, Chang Le, Zheng Yixiang, et al. Tensile mechanical properties and constitutive model of commercial pure titanium TA2 welded joints at medium-low temperature[J]. Iron Steel Vanadium Titanium, 2022, 43(5): 81-89 doi: 10.7513/j.issn.1004-7638.2022.05.012
    [14] Chang L, Zhou C Y, He X H. The Effects of prestrain and subsequent annealing on tensile properties of CP-Ti[J]. Metals, 2017,7:99. doi: 10.3390/met7030099
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  12
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-12
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回