[1] |
雷漫江. 复合细化制备超细晶工业纯钛的腐蚀疲劳行为研究[D]. 西安: 西安建筑科技大学, 2020.Lei Manjiang. Corrosion fatigue properties of UFG CP Ti prepared by compound refinement [D]. Xi'an: Xi'an University of Architecture and Technology, 2020.
|
[2] |
Yang Yu. Study on microstructure evolution of ultrafine crystallization of TA2 industrial pure titanium[J]. Light Industry Technology, 2020,36(2):45−46. (杨羽. TA2工业纯钛超细晶化的组织演化规律研究[J]. 轻工科技, 2020,36(2):45−46.Yang Yu. Study on microstructure evolution of ultrafine crystallization of TA2 industrial pure titanium [J]. Light Industry Technology, 2020, 36(2): 45-46.
|
[3] |
赵鹏程. 温度及应力诱发超细晶工业纯钛再结晶与晶粒长大的机理研究[D]. 上海: 华东理工大学, 2020.Zhao Pengcheng. A study on the mechanism of temperature and stress induced recrystallization and grain growth of ultrafine grained CP Ti[D]. Shanghai: East China University of Science and Technology, 2020.
|
[4] |
Ma Weijie, Yang Xirong, Luo Lei, et al. Dynamic recrystallization model of ultra-fine grained pure titanium under combined deformation[J]. Journal of Materials Research, 2020,34(3):217−224. (马炜杰, 杨西荣, 罗雷, 等. 复合形变超细晶纯钛的动态再结晶模型[J]. 材料研究学报, 2020,34(3):217−224.Ma Weijie, Yang Xirong, Luo Lei, et al.Dynamic recrystallization model of ultra-fine grained pure titanium under combined deformation [J]. Journal of Materials Research, 2020, 34(3): 217-224.
|
[5] |
Murzaev R T, Bachurin D V, Mukhametgalina A A, et al. Ultrasonic treatment of ultrafine-grained titanium[J]. Physics Letters A, 2020,384(35):126906. doi: 10.1016/j.physleta.2020.126906
|
[6] |
Zhang D Y, Qiu D, Gibson M A. et al. Author correction: Additive manufacturing of ultrafine-grained high strength titanium alloys[J]. Nature, 2020,582(7811):E5. doi: 10.1038/s41586-020-2291-z
|
[7] |
庄丽敏. 累积叠轧法制备的超细晶纯Cu、纯Al及Cu/Al多层复合板组织与性能的研究[D]. 南京: 南京理工大学, 2015.Zhuang Limin. Study on the microstructure and properties of ultrafine grain pure Cu, pure Al and Cu/Al multilayer composite plates prepared by accumulative roll forming[D]. Nanjing: Nanjing University of Technology, 2015.
|
[8] |
Li Jianguo, Guo Yazhou, Li Yulong, et al. Preparation and mechanical properties of ultra-fine grained pure titanium at room temperature[J]. Rare Metal Materials and Engineering, 2015,44(3):681−687. (李建国, 郭亚洲, 李玉龙, 等. 常温下超细晶纯钛的制备及其力学性能[J]. 稀有金属材料与工程, 2015,44(3):681−687.Li Jianguo, Guo Yazhou, Li Yulong, et al. Preparation and mechanical properties of ultra-fine grained pure titanium at room temperature[J]. Rare Metal Materials and Engineering, 2015, 44 (3): 681-687.
|
[9] |
Nokhrin A V, Andreev P V, Likhnitskii C V, et al. Studying corrosion resistance of weld joints of ultrafine-grained titanium alloys[J]. Iop Conference Series:Materials Science and Engineering, 2021,1014(1):012037. doi: 10.1088/1757-899X/1014/1/012037
|
[10] |
Daniel Wojtas, Krzyaztof W, Robert C, et al. Microstructure strength relationship of ultrafine-grained titanium manufactured by unconventional severe plastic deformation process[J]. Journal of Alloy and Compounds, 2020,837:155576. doi: 10.1016/j.jallcom.2020.155576
|
[11] |
刘德同. 高压扭转处理超细晶纯钛微观组织演变及热稳定性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.Liu Detong. Study on microstructure evolution and thermal stability of ultrafine-grained pure titanium after high pressure torsion treatment [D]. Harbin: Harbin University of Technology, 2015.
|
[12] |
Feng Fan, Xin Haitao, Wu Yulu, et al. Effect of different roughening treatments on surface properties of ultrafine-grained pure titanium[J]. Journal of Practical Stomatology, 2017,33(2):168−173. (丰帆, 辛海涛, 吴玉禄, 等. 不同粗化处理对超细晶纯钛表面性能的影响[J]. 实用口腔医学杂志, 2017,33(2):168−173. doi: 10.3969/j.issn.1001-3733.2017.02.006Feng Fan, Xin Haitao , Wu Yulv , et al. Effect of different roughening treatments on surface properties of ultrafine-grained pure titanium [J]. Journal of Practical Stomatology, 2017, 33(2): 168-173. doi: 10.3969/j.issn.1001-3733.2017.02.006
|
[13] |
Noyan I C, Cohen J B. Residual stresses measurement by diffraction and interpretation [M]. New York: Springer-Verlag, 1987.
|
[14] |
Díaz N E Vives, Schacherl R E, Zagonel L F, et al. Influence of the microstructure on the residual stresses of nitrided iron–chromium alloys[J]. Acta Materialia, 2007,56(6):1196−1208.
|
[15] |
Yang Y. Study on microstructure evolution of ultrafine crystallization of TA2 industrial pure titanium[J]. Journal of Physics:Conference Series, 2022,2229(1):012003. doi: 10.1088/1742-6596/2229/1/012003
|
[16] |
Chong Yan, Tsuru Tomohito, Guo Baoqi, et al. Ultrahigh yield strength and large uniform elongation achieved in ultrafine-grained titanium containing nitrogen[J]. Acta Materialia, 2022, 240: 118356.
|
[17] |
Yang Xirong, Wang Liyuan, Hao Fengfeng, et al. Fretting fatigue properties of ultrafine grained pure titanium[J]. Rare Metal Materials and Engineering, 2020,49(10):3433−3438. (杨西荣, 王立元, 郝凤凤, 等. 超细晶纯钛的微动疲劳特性[J]. 稀有金属材料与工程, 2020,49(10):3433−3438.Yang Xirong, Wang Liyuan, Hao Fengfeng, et al. Fretting fatigue properties of ultrafine grained pure titanium [J]. Rare Metal Materials and Engineering, 2020, 49 (10): 3433-3438.
|
[18] |
Liu Xiaoyan, Liu Kuijun, Yang Xirong, et al. Fatigue crack propagation behavior of ultrafine-grained pure titanium[J]. Journal of Materials Research, 2020,34(6):417−424. (刘晓燕, 柳奎君, 杨西荣, 等. 超细晶纯钛疲劳裂纹的扩展行为[J]. 材料研究学报, 2020,34(6):417−424. doi: 10.11901/1005.3093.2019.492Liu Xiaoyan, Liu Kuijun , Yang Xirong, et al. Fatigue crack propagation behavior of ultrafine-grained pure titanium[J]. Journal of Materials Research, 2020, 34(6): 417-424. doi: 10.11901/1005.3093.2019.492
|
[19] |
刘建龙. 超细晶纯钛塑性微成形及其尺寸效应研究[D]. 太原: 太原科技大学, 2016.Liu Jianlong. Study on plastic micro forming and size effect of ultrafine grain titanium[D]. Taiyuan: Taiyuan University of Science and Technology, 2016.
|
[20] |
张志伟. 高强度超细晶金属材料塑性行为研究[D]. 马鞍山: 安徽工业大学, 2020.Zhang Zhiwei. Study on plastic behavior of high strength ultrafine grained metallic materials [D]. Ma'anshan: Anhui University of Technology, 2020. )
|
[21] |
Peng Shaochi, Jing Laiwang, Wu Di, et al. Analytical solution of stress intensity factor at the closed crack tip of a circular hole plate under compression[J]. Journal of Water Resources and Water Engineering, 2022,33(6):159−166. (彭绍驰, 经来旺, 吴迪, 等. 受压圆孔板的闭合裂纹尖端应力强度因子解析解[J]. 水资源与水工程学报, 2022,33(6):159−166.Peng Shaochi, Jing Laiwang, Wu Di, et al. Analytical solution of stress intensity factor at the closed crack tip of a circular hole plate under compression [J]. Journal of Water Resources and Water Engineering, 2022, 33 (6): 159-166.
|
[22] |
Zhang Zhengguo. Calculation of stress intensity factor K of Griffith crack in orthotropic plate by superposition principle and symmetry anti symmetry principle KⅠKⅡ[J]. Engineering Mechanics, 1985,(1):6−24. (张正国. 应用叠加原理和对称—反对称原理计算正交各向异性板Griffith裂纹的应力强度因子KⅠKⅡ[J]. 工程力学, 1985,(1):6−24.Zhang Zhengguo. Calculation of stress intensity factor K of Griffith crack in orthotropic plate by superposition principle and symmetry anti symmetry principle$ {\mathrm{K}}_{\mathrm{Ⅰ}}{\mathrm{K}}_{\mathrm{Ⅱ}} $ [J]. Engineering Mechanics, 1985 (1): 6-24.
|
[23] |
Nikonenko A V, Popova N A, Nikonenko E L, et al. Phase composition of ultrafine-grained titanium after aluminum ion implantation[J]. Russian Physics Journal, 2021,64:302−308. doi: 10.1007/s11182-021-02329-y
|
[24] |
Chen W J, Xu J, Liu D T, et al. Thermal stability of ultrafine-grained pure titanium processed by high pressure torsion[J]. Materials Science Forum, 2021,1016:338−344. doi: 10.4028/www.scientific.net/MSF.1016.338
|
[25] |
Yang Xirong, Yang Yuxin, Liu Xiaoyan, et al. Effect of strain ratio on low cycle fatigue behavior of composite ultrafine grained pure titanium[J]. Rare Metal Materials and Engineering, 2020,49(9):3136−3142. (杨西荣, 杨雨欣, 刘晓燕, 等. 应变比对复合细化超细晶纯钛低周疲劳行为的影响[J]. 稀有金属材料与工程, 2020,49(9):3136−3142.Yang Xirong, Yang Yuxin, Liu Xiaoyan, et al. Effect of strain ratio on low cycle fatigue behavior of composite ultrafine grained pure titanium [J]. Rare Metal Materials and Engineering, 2020, 49 (9): 3136-3142.
|
[26] |
Zhang Zipeng, Song Xu, Li Xiaoqiang, et al. Research progress of mechanical treatment technology for metal ultrafine grain surface[J]. Precision Forming Engineering, 2021,13(4):159−171. (张子鹏, 宋旭, 李小强, 等. 金属超细晶表面机械处理技术研究进展[J]. 精密成形工程, 2021,13(4):159−171. doi: 10.3969/j.issn.1674-6457.2021.04.024Zhang Zipeng, Song Xu, Li Xiaoqiang, et al. Research progress of mechanical treatment technology for metal ultrafine grain surface [J]. Precision Forming Engineering, 2021, 13 (4): 159-171. doi: 10.3969/j.issn.1674-6457.2021.04.024
|