留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛精矿酸解尾气中升华硫产生的机理分析

向泉锦 全远霞 全学军 李礼 王海波 陈新红 李平

向泉锦, 全远霞, 全学军, 李礼, 王海波, 陈新红, 李平. 钛精矿酸解尾气中升华硫产生的机理分析[J]. 钢铁钒钛, 2023, 44(3): 100-104. doi: 10.7513/j.issn.1004-7638.2023.03.015
引用本文: 向泉锦, 全远霞, 全学军, 李礼, 王海波, 陈新红, 李平. 钛精矿酸解尾气中升华硫产生的机理分析[J]. 钢铁钒钛, 2023, 44(3): 100-104. doi: 10.7513/j.issn.1004-7638.2023.03.015
Xiang Quanjin, Quan Yuanxia, Quan Xuejun, Li Li, Wang Haibo, Chen Xinhong, Li Ping. Mechanism analysis of the production of sublimated sulfur in the tail gas of acidolysis of titanium concentrate[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 100-104. doi: 10.7513/j.issn.1004-7638.2023.03.015
Citation: Xiang Quanjin, Quan Yuanxia, Quan Xuejun, Li Li, Wang Haibo, Chen Xinhong, Li Ping. Mechanism analysis of the production of sublimated sulfur in the tail gas of acidolysis of titanium concentrate[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 100-104. doi: 10.7513/j.issn.1004-7638.2023.03.015

钛精矿酸解尾气中升华硫产生的机理分析

doi: 10.7513/j.issn.1004-7638.2023.03.015
基金项目: 钒钛资源综合利用国家重点实验室开放基金课题(2022P4FZG10A)。
详细信息
    作者简介:

    向泉锦,1999年出生,女,四川阆中人,硕士研究生,研究方向为资源环境化工,E-mail:QJXiang@stu.cqut.edu.cn

    通讯作者:

    全学军,教授,博士生导师,研究方向为资源环境化工,E-mail:hengjunq@cqut.edu.cn

  • 中图分类号: TF823,X701

Mechanism analysis of the production of sublimated sulfur in the tail gas of acidolysis of titanium concentrate

  • 摘要: 针对硫酸法钛白酸解过程中升华硫堵塞管道从而影响钛白粉连续生产的问题,从钛精矿的结构组成分析出发,结合其在酸解过程可能存在的主要化学反应和实际生产中具体的酸解工艺条件,通过计算相关反应的吉布斯自由能变化,绘制酸解反应条件下体系的电位-pH图,探究了酸解尾气中升华硫产生的机理。结果表明,酸解尾气中单质硫应该主要来源于钛精矿中的磁黄铁矿(FeS),磁黄铁矿在酸解的高温(180~220 ℃)、高酸度(pH:−1.51~−1.47)复杂环境下被氧化生成单质硫,待反应结束后冷却凝固形成升华硫。因此在生产中可以从具体工艺入手,在不降低酸解率的情况下改变酸解环境(改变化学电位、降低环境pH值),以此规避或减小升华硫的产生,降低升华硫对硫酸法钛白的影响。
  • 图  1  钛精矿的XRD分析结果

    Figure  1.  XRD analysis results of titanium concentrate

    图  2  钛精矿的SEM图像

    Figure  2.  SEM image of titanium concentrate

    图  3  S-Fe-Ti-H2O体系中不同温度下S元素存在状态的E-pH关系

    Figure  3.  E-pH diagram of the presence of S element at 180 ℃ (a), 200 ℃ (b), and 220 ℃ (c) in S-Fe-Ti-H2O system

    图  4  钛精矿酸解过程中主反应吉布斯自由能的变化

    Figure  4.  Change of Gibbs free energy of the main reaction during acid hydrolysis of titanium concentrate

    表  1  钛精矿的主要化学成分

    Table  1.   Main chemical components of titanium concentrate %

    TiO2TFeSiO2MgOAl2O3CaOV2O5SMnO
    46.1419.650.791.2770.060.840.080.140.26
    下载: 导出CSV

    表  2  钛精矿的矿物组成

    Table  2.   Mineral composition of titanium concentrate %

    钛铁矿绿泥石钛闪石透辉石榍石磁铁矿钛铁矿+绿泥石钛铁矿+石灰微斜长石黄铁矿磁黄铁矿
    90.532.441.770.940.650.580.540.530.390.120.06
    下载: 导出CSV

    表  3  钛精矿中的元素赋存情况

    Table  3.   Occurrence of elements in titanium concentrate %

    矿物AlCaFeMgMnSSiTiV
    钛铁矿12.2211.4294.9482.9879.470.0029.1497.4597.48
    磁铁矿3.020.001.050.480.000.000.000.140.61
    钛闪石16.4124.180.512.207.180.0014.290.560.70
    绿泥石37.301.421.446.780.000.0019.300.150.02
    榍石2.2718.120.070.020.000.005.390.460.06
    钛铁矿+石灰0.5210.210.400.690.000.000.360.470.41
    微斜长石9.764.110.010.000.000.005.060.000.00
    钛铁矿+绿泥石3.067.040.340.008.740.003.440.500.35
    磁黄铁矿0.000.000.110.000.0024.860.000.000.00
    黄铁矿0.000.000.170.000.0069.520.000.010.00
    下载: 导出CSV
  • [1] Lu Lu, Zhang Chuanlin, Mi Shaobo. Probing interface structure and cation segregation in (In, Nb) co-doped TiO2 thin films[J]. Materials Characterization, 2022,191:112−164.
    [2] Jiang M, Zhang M H, Wang L Z, et al. Photocatalytic degradation of xanthate in flotation plant tailings by TiO2/graphene nanocomposites[J]. Chemical Engineering Journal, 2022,431:134104. doi: 10.1016/j.cej.2021.134104
    [3] Ji R, Xing L, Yang K X, et al. Defect and interface co-steering ultra-wide microwave absorption and superior thermal conductance of TiO2/Fe/C nanocomposites[J]. Applied Surface Science, 2023,608:155207. doi: 10.1016/j.apsusc.2022.155207
    [4] Ziental Daniel, Czarczynska-Goslinska Beata, Mlynarczyk Dariusz T, et al. Titanium dioxide nanoparticles: Prospects and applications in medicine[J]. Nanomaterials, 2020,10(2):387. doi: 10.3390/nano10020387
    [5] Paolini R, Borroni D, Pedeferri M, et al. Self-cleaning building materials: The multifaceted effects of titanium dioxide[J]. Construction and Building Materials, 2018,182:126−133. doi: 10.1016/j.conbuildmat.2018.06.047
    [6] Yu X, Jin X, Chen X Y, et al. A microorganism bred TiO2/Au/TiO2 heterostructure for whispering gallery mode resonance assisted plasmonic photocatalysis[J]. ACS Nano, 2020,14:13876−13885. doi: 10.1021/acsnano.0c06278
    [7] Croce P S, Mousavi A. A sustainable sulfate process to produce TiO2 pigments[J]. Environmental Chemistry Letters, 2013,11(4):325−328. doi: 10.1007/s10311-013-0410-x
    [8] Zhang L, Hu H P, Liao Z, et al. Hydrochloric acid leaching behavior of different treated Panxi ilmenite concentrations[J]. Hydrometallurgy, 2011: 40-47.
    [9] Nguyen T H, Lee M S. A review on the recovery of titanium dioxide from ilmenite ores by direct leaching technologies[J]. Mineral Processing and Extractive Metallurgy Review, 2019,40(4):231−247. doi: 10.1080/08827508.2018.1502668
    [10] Luo Zhiqiang. Application of continuous acidolysis in TiO2 production by sulfuric acid process[J]. Inorganic Chemicals Industry, 2012,44(3):33−35. (罗志强. 连续酸解技术在硫酸法钛白生产中的应用[J]. 无机盐工业, 2012,44(3):33−35.

    Luo Zhiqiang. Application of continuous acidolysis in TiO2 production by sulfuric acid process[J]. Inorganic Chemicals Industry, 2012, 44(3): 33-35.
    [11] Qu Yichen, Zhang Yingying. Study on continuous acidification technology of titanium dioxide by sulfuric acid method[J]. Research and Development, 2019,45(7):153−154. (曲以臣, 张盈盈. 硫酸法钛白粉中连续酸解技术研究[J]. 化工设计通讯, 2019,45(7):153−154. doi: 10.3969/j.issn.1003-6490.2019.07.101

    Qu Yichen, Zhang Yingying. Study on continuous acidification technology of titanium dioxide by sulfuric acid method[J]. Research and Development, 2019, 45(7): 153-154. doi: 10.3969/j.issn.1003-6490.2019.07.101
    [12] Jia Linie, Liang Bin, Lü Li, et al. Beneficiation of titania by sulfuric acid pressure leaching of Panzhihua ilmenite[J]. Hydrometallurgy, 2014,59:92−98.
    [13] Li Zenghe, Wang Zhencui, Li Ge. Preparation of nano-titanium dioxide from ilmenite using sulfuric acid-decomposition by liquid phase method[J]. Powder Technology, 2016,287:256−263. doi: 10.1016/j.powtec.2015.09.008
    [14] Wang Haibo, Luo Zhiqiang, Wu Xiaoping, et al. Study on the S content of titanium slag acid hydrolysis tail gas[J]. Iron Steel Vanadium Titanium, 2020,41(4):92−96. (王海波, 罗志强, 吴小平, 等. 钛渣酸解尾气S含量研究[J]. 钢铁钒钛, 2020,41(4):92−96.

    Wang Haibo, Luo Zhiqiang, Wu Xiaoping, et al. Study on the S content of titanium slag acid hydrolysis tail gas[J]. Iron Steel Vanadium Titanium, 2020, 41(4): 92-96.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  45
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-31
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回