中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钒钛铁尾矿制备硅酸钙隔声板材及其性能研究

王长龙 荆牮霖 齐洋 张岳文 郑永超 马锦涛 平浩岩 翟玉新 刘枫

王长龙, 荆牮霖, 齐洋, 张岳文, 郑永超, 马锦涛, 平浩岩, 翟玉新, 刘枫. 钒钛铁尾矿制备硅酸钙隔声板材及其性能研究[J]. 钢铁钒钛, 2023, 44(3): 105-113. doi: 10.7513/j.issn.1004-7638.2023.03.016
引用本文: 王长龙, 荆牮霖, 齐洋, 张岳文, 郑永超, 马锦涛, 平浩岩, 翟玉新, 刘枫. 钒钛铁尾矿制备硅酸钙隔声板材及其性能研究[J]. 钢铁钒钛, 2023, 44(3): 105-113. doi: 10.7513/j.issn.1004-7638.2023.03.016
Wang Changlong, Jing Jianlin, Qi Yang, Zhang Yuewen, Zheng Yongchao, Ma Jintao, Ping Haoyan, Zhai Yuxin, Liu Feng. Preparation and properties of calcium silicate sound insulation board from vanadium-titanium iron ore tailings[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 105-113. doi: 10.7513/j.issn.1004-7638.2023.03.016
Citation: Wang Changlong, Jing Jianlin, Qi Yang, Zhang Yuewen, Zheng Yongchao, Ma Jintao, Ping Haoyan, Zhai Yuxin, Liu Feng. Preparation and properties of calcium silicate sound insulation board from vanadium-titanium iron ore tailings[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 105-113. doi: 10.7513/j.issn.1004-7638.2023.03.016

钒钛铁尾矿制备硅酸钙隔声板材及其性能研究

doi: 10.7513/j.issn.1004-7638.2023.03.016
基金项目: 国家重点研发计划(2021YFC1910605);河北省自然科学基金(E2020402079);河北省科技重大专项项目(21283804Z);中铁建设集团有限公司科技研发计划(22-14b, 22-11b);固废资源化利用与节能国家重点实验室开放基金(SWR-2023-007)。
详细信息
    作者简介:

    王长龙,1977年出生,男,黑龙江七台河人,教授,博导,主要从事固体废弃物资源化利用,E-mail:baistuwong@139.com

    通讯作者:

    张岳文,1979年出生,男,安徽合肥人,讲师,硕士,主要从事固废基绿色建材,E-mail:zhangyuewen@hebeu.edu.cn

  • 中图分类号: X757,TU55

Preparation and properties of calcium silicate sound insulation board from vanadium-titanium iron ore tailings

  • 摘要: 为了促进胶凝活性弱的钒钛铁尾矿的综合利用,研究以钒钛铁尾矿为主要原料制备硅酸钙隔声板材。通过粒度分析、力学性能测试等手段,首先研究了钒钛铁尾矿的粉磨特性,而后以钒钛铁尾矿、硅灰、水泥为原料,制备复合胶凝材料,再添加废橡胶粉和钢纤维为增强材料,采用蒸汽养护的方式来制备硅酸钙隔声板材,并探索增强材料以及层结构对硅酸钙隔声板材性能的影响。结果表明,碱熔能有效促进钒钛铁尾矿中硅、铝活性的提高,Si4+和Al3+最高浓度分别为17.27、6.80 mg/L;当复合胶凝材料配合比为钒钛铁尾矿∶水泥∶硅灰=2∶7∶1,胶砂比为1∶3,水胶比为0.5,28 d抗压强度为39.7 MPa。钒钛铁尾矿所制备的硅酸钙隔声板材中,单层隔声板材中单掺钢纤维0.93%时,抗折强度为8.0 MPa;单掺橡胶粉1%(体积分数)时,抗折强度为8.8 MPa;复合添加(钢纤维1.6%,橡胶粉3%)时,其抗折强度为6.1 MPa。分层浇筑不同配料料浆制备的多层结构板材,抗折强度最高值为8.2 MPa。钒钛铁尾矿制备的硅酸钙隔声板材,其抗折强度符合GB/T 7019-2014和JC/T 564.1-2018标准要求。
  • 图  1  原料的XRD图谱

    (a)钒钛铁尾矿;(b)硅灰

    Figure  1.  XRD patterns of raw materials

    图  2  原料的粒度分布

    (a)钒钛铁尾矿;(b)硅灰

    Figure  2.  Particle distribution of raw materials

    图  3  不同粉磨时间钒钛铁尾矿的粒度分布

    Figure  3.  Particle distribution of VTIOTs with different grinding time

    图  4  钒钛铁尾矿比表面积和特征粒径与粉磨时间的相关性

    Figure  4.  Correlation between specific surface area and characteristic particle size of VTIOTs and grinding time

    图  5  硅铝离子的浸出浓度对比

    Figure  5.  Comparison of leaching concentration of Si4+ and Al3+ in VTIOTs

    (a)Si4+;(b)Al3+

    图  6  钒钛铁尾矿掺量对复合胶凝材料强度的影响

    Figure  6.  Effect of VTIOTs content on the compressive strength of CCM

    图  7  钢纤维掺量对硅酸钙隔声板材性能的影响

    Figure  7.  Effect of steel fiber content on the properties of CSSB

    图  8  废橡胶粉掺量对硅酸钙隔声板材性能的影响

    Figure  8.  Effect of waste rubber powder content on the properties of CSSB

    图  9  钢纤维-废橡胶粉掺量对硅酸钙隔声板材性能的影响

    Figure  9.  Effect of steel fiber-waste rubber powder content on the properties of CSSB

    图  10  不同层结构对硅酸钙隔声板材性能的影响

    Figure  10.  Effect of different layer structures on the properties of CSSB

    表  1  原材料化学成分

    Table  1.   Chemical compositions of the raw materials %

    原料SiO2Al2O3CaOFe2O3TiO2P2O5MgOK2ONa2OSO3LOI
    钒钛铁尾矿43.207.6321.9310.950.9111.260.300.560.093.17
    硅 灰93.500.940.080.100.810.540.260.240.123.41
    水 泥4.6810.9561.670.300.340.152.790.0617.062.00
    下载: 导出CSV

    表  2  复合胶凝材料配合比

    Table  2.   Mix proportion of CCM

    试验
    编号
    水泥/g钒钛铁尾矿/g硅灰/g液体与粘合剂
    的比率
    砂与粘合剂
    的比率
    A04500.53.0
    A13151350.53.0
    A231590450.53.0
    下载: 导出CSV

    表  3  掺加钢纤维制备硅酸钙隔声板材的配合比

    Table  3.   The mix ratio of CSSB prepared by mixing steel fibers

    试验
    编号
    水泥/g尾矿粉/g硅灰/g尾矿砂/g水/g钢纤维
    (体积分数)/%
    S05601608012001600
    S15601608012001600.93
    S25601608012001601.60
    S35601608012001602.27
    下载: 导出CSV

    表  4  掺加废橡胶粉制备硅酸钙隔声板材的配合比

    Table  4.   The mix ratio of CSSB prepared by mixing waste rubber powder

    试验编号水泥/g尾矿粉/g硅灰/g尾矿砂/g水/g橡胶粉/%
    R05601608012001600
    R15601608012001601
    R25601608012001603
    R35601608012001605
    下载: 导出CSV

    表  5  掺加钢纤维和废橡胶粉制备硅酸钙隔声板材的配合比

    Table  5.   The mix ratio of CSSB prepared by mixing steel fiber and waste rubber powder

    试验
    编号
    水泥/g尾矿粉/g硅灰/g尾矿砂/g水/g钢纤维(体
    积分数)%
    橡胶
    粉/ %
    SR056016080120016000
    SR15601608012001600.933
    SR25601608012001601.603
    SR35601608012001602.273
    SR45601608012001600.937
    SR55601608012001601.607
    SR65601608012001602.277
    下载: 导出CSV

    表  6  不同层结构硅酸钙隔声板材的配合比

    Table  6.   The mix ratio of CSSB with different layer structures

    试验
    编号
    水泥/g尾矿
    粉/g
    硅灰/g尾矿
    砂/g
    水/g钢纤维(体
    积分数)/%
    橡胶粉/%
    123
    L1-056016080120016000
    L2-12808040600801.6003
    L2-22808040600801.6007
    L2-32808040600802.2703
    L2-42808040600802.2707
    L3-1186.753.326.740053.31.60030
    L3-2186.753.326.740053.31.60070
    L3-3186.753.326.740053.32.27030
    L3-4186.753.326.740053.32.27070
    下载: 导出CSV
  • [1] Yao G, Wang Q, Su Y W, et al. Mechanical activation as an innovative approach for the preparation of pozzolan from iron ore tailings[J]. Minerals Engineering, 2020,145:106068. doi: 10.1016/j.mineng.2019.106068
    [2] Lu Chang, Chen Hongyun, Fu Liangjie, et al. Research progress on the preparation of new building materials using iron tailings[J]. Materials Report, 2021,35(5):5011−5026. (路畅, 陈洪运, 傅梁杰, 等. 铁尾矿制备新型建筑材料的国内外进展[J]. 材料导报, 2021,35(5):5011−5026. doi: 10.11896/cldb.20030178

    Lu Chang, Chen Hongyun, Fu Liangjie, et al. Research progress on the preparation of new building materials using iron tailings [J]. Materials Report, 2021, 35(5): 5011-5026. doi: 10.11896/cldb.20030178
    [3] Chen T, Jian S, Xie X, et al. Research progress on comprehensive utilization of vanadium-titanium magnetite tailings[J]. Conservation and Utilization of Mineral Resources, 2021,41(2):174−178.
    [4] Shuai Y, Zhang Q, Heng Y, et al. Efficient iron recovery from iron tailings using advanced suspension reduction technology: A study of reaction kinetics, phase transformation, and structure evolution[J]. Journal of Hazardous Materials, 2020,404:124067.
    [5] Wang W, Ye P F, Zhou X L, et al. Effects of reductant type on coal-based direct reduction of iron ore tailings[J]. Annales de Chimie Science des Matériaux, 2018,42(3):453−466.
    [6] Shuai Y, Zhou W T, Han Y X, et al. Efficient enrichment of iron concentrate from iron tailings via suspension magnetization roasting and magnetic separation[J]. Journal of Material Cycles and Waste Management, 2020,22(1):1152−1162.
    [7] Zhai J H, Wang H B, Pan C, et al. Recycling of iron and titanium resources from early tailings: From fundamental work to industrial application[J]. Chemosphere, 2020,242:1−8.
    [8] Zhang Y, Wang L J, Duan Y D, et al. Preparation and performance of ce-doped far-infrared radiation ceramics by single iron ore tailings[J]. Ceramics International, 2022,48(8):11709−11717. doi: 10.1016/j.ceramint.2022.01.029
    [9] Menders B C, Pedroti L G, Fontes M P F, et al. Technical and environmental assessment of the incorporation of iron ore tailings in construction clay bricks[J]. Construction and Building Materials, 2019,227:1−13.
    [10] Li X G, Wang P Q, Qin J Y, et al. Mechanical properties of sintered ceramsite from iron ore tailings affected by two-region structure[J]. Construction and Building Materials, 2020,240:117919. doi: 10.1016/j.conbuildmat.2019.117919
    [11] Santana P H L, Burak D L, Thiengo C C, et al. Jack beans and vetiver grass growth on iron ore tailing sediments from the doce river dam disaster in brazil: Plant growth regulator effects under different edaphic conditions[J]. Journal of Soils and Sediments, 2020,20(2):1−8.
    [12] Cui X W, Geng Y, Li T, et al. Field application and effect evaluation of different iron tailings soil utilization technologies[J]. Resources, Conservation and Recycling, 2021,173:1−12.
    [13] Hellen L D C E S A, Athos M L S, Regina M B, et al. Addition of iron ore tailings to increase the efficiency of anaerobic digestion of pig manure: A technical and economic analysis[J]. Biomass and Bioenergy, 2021,148:1−18.
    [14] Qiu J P, Yang L, Sun X G, et al. Strength characteristics and failure mechanism of cemented super-fine unclassified tailings backfill[J]. Minerals, 2017,58(7):1−13.
    [15] Coura I R, Carmignano O R D R, Heitmann A P, et al. Use of iron mine tailing as fillers to polyethylene[J]. Scientific Reports, 2021,11(1):1−9. doi: 10.1038/s41598-020-79139-8
    [16] Onitiri M A, Akinlabi E T. Effects of particle size and particle loading on the tensile properties of iron-ore-tailing-filled epoxy and polypropylene composites[J]. Mechanics of Composite Materials, 2017,52(6):817−828. doi: 10.1007/s11029-017-9633-4
    [17] Carmignano O R, Vieira S S, Teixeira A P C, et al. Iron ore tailings: Characterization and applications[J]. Journal of the Brazilian Chemical Society, 2021,32(10):1895−1911.
    [18] Chen M X, Lu L C, Wang S D, et al. Investigation on the formation of tobermorite in calcium silicate board and its influence factors under autoclaved curing[J]. Construction and Building Materials, 2017,143:280−288. doi: 10.1016/j.conbuildmat.2017.03.143
    [19] Zhan Jiayu, Yang Feihua, Li Wanmin, et al. Hydration characteristics and humidity control performance of calcium silicate board prepared from mine mailing and diatomite[J]. Journal of Wuhan University of Technology (Materials Science), 2020,35(1):147−154. doi: 10.1007/s11595-020-2238-0
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  217
  • HTML全文浏览量:  69
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-28
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回