留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钒钛铁尾矿制备硅酸钙隔声板材及其性能研究

王长龙 荆牮霖 齐洋 张岳文 郑永超 马锦涛 平浩岩 翟玉新 刘枫

王长龙, 荆牮霖, 齐洋, 张岳文, 郑永超, 马锦涛, 平浩岩, 翟玉新, 刘枫. 钒钛铁尾矿制备硅酸钙隔声板材及其性能研究[J]. 钢铁钒钛, 2023, 44(3): 105-113. doi: 10.7513/j.issn.1004-7638.2023.03.016
引用本文: 王长龙, 荆牮霖, 齐洋, 张岳文, 郑永超, 马锦涛, 平浩岩, 翟玉新, 刘枫. 钒钛铁尾矿制备硅酸钙隔声板材及其性能研究[J]. 钢铁钒钛, 2023, 44(3): 105-113. doi: 10.7513/j.issn.1004-7638.2023.03.016
Wang Changlong, Jing Jianlin, Qi Yang, Zhang Yuewen, Zheng Yongchao, Ma Jintao, Ping Haoyan, Zhai Yuxin, Liu Feng. Preparation and properties of calcium silicate sound insulation board from vanadium-titanium iron ore tailings[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 105-113. doi: 10.7513/j.issn.1004-7638.2023.03.016
Citation: Wang Changlong, Jing Jianlin, Qi Yang, Zhang Yuewen, Zheng Yongchao, Ma Jintao, Ping Haoyan, Zhai Yuxin, Liu Feng. Preparation and properties of calcium silicate sound insulation board from vanadium-titanium iron ore tailings[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 105-113. doi: 10.7513/j.issn.1004-7638.2023.03.016

钒钛铁尾矿制备硅酸钙隔声板材及其性能研究

doi: 10.7513/j.issn.1004-7638.2023.03.016
基金项目: 国家重点研发计划(2021YFC1910605);河北省自然科学基金(E2020402079);河北省科技重大专项项目(21283804Z);中铁建设集团有限公司科技研发计划(22-14b, 22-11b);固废资源化利用与节能国家重点实验室开放基金(SWR-2023-007)。
详细信息
    作者简介:

    王长龙,1977年出生,男,黑龙江七台河人,教授,博导,主要从事固体废弃物资源化利用,E-mail:baistuwong@139.com

    通讯作者:

    张岳文,1979年出生,男,安徽合肥人,讲师,硕士,主要从事固废基绿色建材,E-mail:zhangyuewen@hebeu.edu.cn

  • 中图分类号: X757,TU55

Preparation and properties of calcium silicate sound insulation board from vanadium-titanium iron ore tailings

  • 摘要: 为了促进胶凝活性弱的钒钛铁尾矿的综合利用,研究以钒钛铁尾矿为主要原料制备硅酸钙隔声板材。通过粒度分析、力学性能测试等手段,首先研究了钒钛铁尾矿的粉磨特性,而后以钒钛铁尾矿、硅灰、水泥为原料,制备复合胶凝材料,再添加废橡胶粉和钢纤维为增强材料,采用蒸汽养护的方式来制备硅酸钙隔声板材,并探索增强材料以及层结构对硅酸钙隔声板材性能的影响。结果表明,碱熔能有效促进钒钛铁尾矿中硅、铝活性的提高,Si4+和Al3+最高浓度分别为17.27、6.80 mg/L;当复合胶凝材料配合比为钒钛铁尾矿∶水泥∶硅灰=2∶7∶1,胶砂比为1∶3,水胶比为0.5,28 d抗压强度为39.7 MPa。钒钛铁尾矿所制备的硅酸钙隔声板材中,单层隔声板材中单掺钢纤维0.93%时,抗折强度为8.0 MPa;单掺橡胶粉1%(体积分数)时,抗折强度为8.8 MPa;复合添加(钢纤维1.6%,橡胶粉3%)时,其抗折强度为6.1 MPa。分层浇筑不同配料料浆制备的多层结构板材,抗折强度最高值为8.2 MPa。钒钛铁尾矿制备的硅酸钙隔声板材,其抗折强度符合GB/T 7019-2014和JC/T 564.1-2018标准要求。
  • 图  1  原料的XRD图谱

    (a)钒钛铁尾矿;(b)硅灰

    Figure  1.  XRD patterns of raw materials

    图  2  原料的粒度分布

    (a)钒钛铁尾矿;(b)硅灰

    Figure  2.  Particle distribution of raw materials

    图  3  不同粉磨时间钒钛铁尾矿的粒度分布

    Figure  3.  Particle distribution of VTIOTs with different grinding time

    图  4  钒钛铁尾矿比表面积和特征粒径与粉磨时间的相关性

    Figure  4.  Correlation between specific surface area and characteristic particle size of VTIOTs and grinding time

    图  5  硅铝离子的浸出浓度对比

    Figure  5.  Comparison of leaching concentration of Si4+ and Al3+ in VTIOTs

    (a)Si4+;(b)Al3+

    图  6  钒钛铁尾矿掺量对复合胶凝材料强度的影响

    Figure  6.  Effect of VTIOTs content on the compressive strength of CCM

    图  7  钢纤维掺量对硅酸钙隔声板材性能的影响

    Figure  7.  Effect of steel fiber content on the properties of CSSB

    图  8  废橡胶粉掺量对硅酸钙隔声板材性能的影响

    Figure  8.  Effect of waste rubber powder content on the properties of CSSB

    图  9  钢纤维-废橡胶粉掺量对硅酸钙隔声板材性能的影响

    Figure  9.  Effect of steel fiber-waste rubber powder content on the properties of CSSB

    图  10  不同层结构对硅酸钙隔声板材性能的影响

    Figure  10.  Effect of different layer structures on the properties of CSSB

    表  1  原材料化学成分

    Table  1.   Chemical compositions of the raw materials %

    原料SiO2Al2O3CaOFe2O3TiO2P2O5MgOK2ONa2OSO3LOI
    钒钛铁尾矿43.207.6321.9310.950.9111.260.300.560.093.17
    硅 灰93.500.940.080.100.810.540.260.240.123.41
    水 泥4.6810.9561.670.300.340.152.790.0617.062.00
    下载: 导出CSV

    表  2  复合胶凝材料配合比

    Table  2.   Mix proportion of CCM

    试验
    编号
    水泥/g钒钛铁尾矿/g硅灰/g液体与粘合剂
    的比率
    砂与粘合剂
    的比率
    A04500.53.0
    A13151350.53.0
    A231590450.53.0
    下载: 导出CSV

    表  3  掺加钢纤维制备硅酸钙隔声板材的配合比

    Table  3.   The mix ratio of CSSB prepared by mixing steel fibers

    试验
    编号
    水泥/g尾矿粉/g硅灰/g尾矿砂/g水/g钢纤维
    (体积分数)/%
    S05601608012001600
    S15601608012001600.93
    S25601608012001601.60
    S35601608012001602.27
    下载: 导出CSV

    表  4  掺加废橡胶粉制备硅酸钙隔声板材的配合比

    Table  4.   The mix ratio of CSSB prepared by mixing waste rubber powder

    试验编号水泥/g尾矿粉/g硅灰/g尾矿砂/g水/g橡胶粉/%
    R05601608012001600
    R15601608012001601
    R25601608012001603
    R35601608012001605
    下载: 导出CSV

    表  5  掺加钢纤维和废橡胶粉制备硅酸钙隔声板材的配合比

    Table  5.   The mix ratio of CSSB prepared by mixing steel fiber and waste rubber powder

    试验
    编号
    水泥/g尾矿粉/g硅灰/g尾矿砂/g水/g钢纤维(体
    积分数)%
    橡胶
    粉/ %
    SR056016080120016000
    SR15601608012001600.933
    SR25601608012001601.603
    SR35601608012001602.273
    SR45601608012001600.937
    SR55601608012001601.607
    SR65601608012001602.277
    下载: 导出CSV

    表  6  不同层结构硅酸钙隔声板材的配合比

    Table  6.   The mix ratio of CSSB with different layer structures

    试验
    编号
    水泥/g尾矿
    粉/g
    硅灰/g尾矿
    砂/g
    水/g钢纤维(体
    积分数)/%
    橡胶粉/%
    123
    L1-056016080120016000
    L2-12808040600801.6003
    L2-22808040600801.6007
    L2-32808040600802.2703
    L2-42808040600802.2707
    L3-1186.753.326.740053.31.60030
    L3-2186.753.326.740053.31.60070
    L3-3186.753.326.740053.32.27030
    L3-4186.753.326.740053.32.27070
    下载: 导出CSV
  • [1] Yao G, Wang Q, Su Y W, et al. Mechanical activation as an innovative approach for the preparation of pozzolan from iron ore tailings[J]. Minerals Engineering, 2020,145:106068. doi: 10.1016/j.mineng.2019.106068
    [2] Lu Chang, Chen Hongyun, Fu Liangjie, et al. Research progress on the preparation of new building materials using iron tailings[J]. Materials Report, 2021,35(5):5011−5026. (路畅, 陈洪运, 傅梁杰, 等. 铁尾矿制备新型建筑材料的国内外进展[J]. 材料导报, 2021,35(5):5011−5026. doi: 10.11896/cldb.20030178

    Lu Chang, Chen Hongyun, Fu Liangjie, et al. Research progress on the preparation of new building materials using iron tailings [J]. Materials Report, 2021, 35(5): 5011-5026. doi: 10.11896/cldb.20030178
    [3] Chen T, Jian S, Xie X, et al. Research progress on comprehensive utilization of vanadium-titanium magnetite tailings[J]. Conservation and Utilization of Mineral Resources, 2021,41(2):174−178.
    [4] Shuai Y, Zhang Q, Heng Y, et al. Efficient iron recovery from iron tailings using advanced suspension reduction technology: A study of reaction kinetics, phase transformation, and structure evolution[J]. Journal of Hazardous Materials, 2020,404:124067.
    [5] Wang W, Ye P F, Zhou X L, et al. Effects of reductant type on coal-based direct reduction of iron ore tailings[J]. Annales de Chimie Science des Matériaux, 2018,42(3):453−466.
    [6] Shuai Y, Zhou W T, Han Y X, et al. Efficient enrichment of iron concentrate from iron tailings via suspension magnetization roasting and magnetic separation[J]. Journal of Material Cycles and Waste Management, 2020,22(1):1152−1162.
    [7] Zhai J H, Wang H B, Pan C, et al. Recycling of iron and titanium resources from early tailings: From fundamental work to industrial application[J]. Chemosphere, 2020,242:1−8.
    [8] Zhang Y, Wang L J, Duan Y D, et al. Preparation and performance of ce-doped far-infrared radiation ceramics by single iron ore tailings[J]. Ceramics International, 2022,48(8):11709−11717. doi: 10.1016/j.ceramint.2022.01.029
    [9] Menders B C, Pedroti L G, Fontes M P F, et al. Technical and environmental assessment of the incorporation of iron ore tailings in construction clay bricks[J]. Construction and Building Materials, 2019,227:1−13.
    [10] Li X G, Wang P Q, Qin J Y, et al. Mechanical properties of sintered ceramsite from iron ore tailings affected by two-region structure[J]. Construction and Building Materials, 2020,240:117919. doi: 10.1016/j.conbuildmat.2019.117919
    [11] Santana P H L, Burak D L, Thiengo C C, et al. Jack beans and vetiver grass growth on iron ore tailing sediments from the doce river dam disaster in brazil: Plant growth regulator effects under different edaphic conditions[J]. Journal of Soils and Sediments, 2020,20(2):1−8.
    [12] Cui X W, Geng Y, Li T, et al. Field application and effect evaluation of different iron tailings soil utilization technologies[J]. Resources, Conservation and Recycling, 2021,173:1−12.
    [13] Hellen L D C E S A, Athos M L S, Regina M B, et al. Addition of iron ore tailings to increase the efficiency of anaerobic digestion of pig manure: A technical and economic analysis[J]. Biomass and Bioenergy, 2021,148:1−18.
    [14] Qiu J P, Yang L, Sun X G, et al. Strength characteristics and failure mechanism of cemented super-fine unclassified tailings backfill[J]. Minerals, 2017,58(7):1−13.
    [15] Coura I R, Carmignano O R D R, Heitmann A P, et al. Use of iron mine tailing as fillers to polyethylene[J]. Scientific Reports, 2021,11(1):1−9. doi: 10.1038/s41598-020-79139-8
    [16] Onitiri M A, Akinlabi E T. Effects of particle size and particle loading on the tensile properties of iron-ore-tailing-filled epoxy and polypropylene composites[J]. Mechanics of Composite Materials, 2017,52(6):817−828. doi: 10.1007/s11029-017-9633-4
    [17] Carmignano O R, Vieira S S, Teixeira A P C, et al. Iron ore tailings: Characterization and applications[J]. Journal of the Brazilian Chemical Society, 2021,32(10):1895−1911.
    [18] Chen M X, Lu L C, Wang S D, et al. Investigation on the formation of tobermorite in calcium silicate board and its influence factors under autoclaved curing[J]. Construction and Building Materials, 2017,143:280−288. doi: 10.1016/j.conbuildmat.2017.03.143
    [19] Zhan Jiayu, Yang Feihua, Li Wanmin, et al. Hydration characteristics and humidity control performance of calcium silicate board prepared from mine mailing and diatomite[J]. Journal of Wuhan University of Technology (Materials Science), 2020,35(1):147−154. doi: 10.1007/s11595-020-2238-0
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  21
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-28
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回