中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氯盐环境下600 MPa级耐蚀钢筋腐蚀行为研究

李霈 袁静 黄吉祥 闫博 阴树标 雷霆

李霈, 袁静, 黄吉祥, 闫博, 阴树标, 雷霆. 氯盐环境下600 MPa级耐蚀钢筋腐蚀行为研究[J]. 钢铁钒钛, 2023, 44(3): 123-130. doi: 10.7513/j.issn.1004-7638.2023.03.019
引用本文: 李霈, 袁静, 黄吉祥, 闫博, 阴树标, 雷霆. 氯盐环境下600 MPa级耐蚀钢筋腐蚀行为研究[J]. 钢铁钒钛, 2023, 44(3): 123-130. doi: 10.7513/j.issn.1004-7638.2023.03.019
Li Pei, Yuan Jing, Huang Jixiang, Yan Bo, Yin Shubiao, Lei Ting. Study on the corrosion behavior of a 600 MPa corrosion-resistant steel barin a chloride environment[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 123-130. doi: 10.7513/j.issn.1004-7638.2023.03.019
Citation: Li Pei, Yuan Jing, Huang Jixiang, Yan Bo, Yin Shubiao, Lei Ting. Study on the corrosion behavior of a 600 MPa corrosion-resistant steel barin a chloride environment[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 123-130. doi: 10.7513/j.issn.1004-7638.2023.03.019

氯盐环境下600 MPa级耐蚀钢筋腐蚀行为研究

doi: 10.7513/j.issn.1004-7638.2023.03.019
详细信息
    作者简介:

    李霈,1996年出生,男,河北张家口人,硕士研究生,研究方向:钢铁材料腐蚀与应用,E-mail:lp1277504201@163.com

    通讯作者:

    阴树标,男,博士,副教授,长期从事先进钢铁材料强化机制及腐蚀机理的研究工作,E-mail:278912571@qq.com

  • 中图分类号: TF76,TU375

Study on the corrosion behavior of a 600 MPa corrosion-resistant steel barin a chloride environment

  • 摘要: 以普通600 MPa级高强抗震钢筋HRB600E和经过合金调控后的同级别耐蚀钢筋为试验对象,通过周期浸润试验、电化学试验、表面分析技术和物相分析技术研究了氯盐环境下Cr、V对600 MPa级耐蚀钢筋腐蚀行为。结果表明,耐蚀合金的加入促进基体中贝氏体组织产生,减缓了铁素体阳极腐蚀进程;V、Cr元素的协同作用能够阻碍Cl下渗,有效延缓锈层生长速度,360 h周期浸润后耐蚀钢筋腐蚀速率下降;Cr-V体系元素调控下耐蚀钢筋电化学性质自腐蚀电位提升,钝化后电位正移,腐蚀电流密度下降;耐蚀钢筋钝化后交流阻抗值显著提升,在混凝土碱性环境中耐腐蚀性能优异;合金元素调控改善了钢筋腐蚀产物的物相组成,耐蚀钢筋后期腐蚀产物中α-FeOOH及γ-FeOOH 占比更高,且内锈层有尖晶石结构产物FeCr2O4富集,增加了内锈层的致密度和稳定性。
  • 图  1  HRB600cE(a)和HRB600E(b)钢筋的微观组织结构

    Figure  1.  Microstructures of HRB600cE (a) and HRB600E (b) bars by electron microscope

    图  2  HRB600cE and HRB600E不同时长下腐蚀速率(a)和年腐蚀深度(b)

    Figure  2.  Corrosion rate (a) and annual corrosion depth (b) of HRB600cE and HRB600E

    图  3  HRB600cE不同浸润时长下外锈层腐蚀宏观形貌

    Figure  3.  Corrosion profile of the outer rust layer at different immersion time of HRB600cE

    (a)72 h; (b)144 h; (c)360 h

    图  4  HRB600E不同浸润时长下外锈层腐蚀宏观形貌

    Figure  4.  Corrosion profile of the outer rust layer at different immersion time of HRB600E

    (a) 72 h; (b) 144 h; (c) 360 h

    图  5  试验钢周期浸润144、360 h后锈层微观形貌及能谱

    (a) HRB600cE,周期浸润144 h ;(b) HRB600E,周期浸润144 h ;(c) HRB600cE,周期浸润360 h;(d) HRB600E,周期浸润360 h

    Figure  5.  Micromorphology of the rust layer and XRD after 144 h and 360 h immersion

    图  6  HRB600cE(a)及HRB600E(b)不同时长下锈层腐蚀产物物相组成

    Figure  6.  XRD results of the rust layer components of HRB600cE(a) and HRB600E(b) rebars for different corrosion times

    图  7  HRB600cE及HRB600E在2.0%NaCl溶液中原始态及钝化态极化曲线

    Figure  7.  Polarization curves of HRB600cE and HRB600E rebars in a 2.0% NaCl solution

    图  8  HRB600cE及HRB600E在2%NaCl溶液中交流阻抗曲线

    Figure  8.  Nyquist plots of HRB600cE and HRB600E rebars in a 2% NaCl solution

    表  1  试验钢化学成分

    Table  1.   Chemical compositions of HRB600cE and HRB600E bar %

    钢种CSiMnSPCrMo+Ni+CuVNbFe
    HRB600cE≤0.200.501.15≤0.004≤0.018 0.75~1.10≥1.10≤0.10余量
    HRB600E0.260.701.54≤0.008≤0.025≤0.15≤0.012
    下载: 导出CSV

    表  2  锈层致密处元素组成

    Table  2.   Chemical compositions of the compact rust

    牌号浸润时长/h元素占比/%
    OCrVFeCl
    HRB600cE1445.3210.4210.25493.6840.320
    36030.8350.1580.30167.7260.980
    HRB600E14412.8220.02384.3412.267
    36027.9420.33169.0332.182
    下载: 导出CSV

    表  3  HRB600cE与HRB600E极化曲线拟合结果

    Table  3.   Fitting results of the polarization curves of HRB600cE and HRB600E

    钢筋状态Ecorr/mVicorr/(μA·cm−2)Ep/mV
    HRB600cE原始态6831.340
    HRB600cE钝化后6230.7829
    HRB600E原始态76540
    HRB600E钝化后7343.320
    下载: 导出CSV
  • [1] Ye Zhanchun, Guan Chunlong. Study on corrosion resistance and wear resistance of new vanadium-containing weather proof steel for building[J]. Iron Steel Vanadium Titanium, 2019,40(4):116−120. (叶占春, 关春龙. 含钒新型建筑耐候钢的耐蚀及耐磨性能研究[J]. 钢铁钒钛, 2019,40(4):116−120. doi: 10.7513/j.issn.1004-7638.2019.04.022

    Ye Zhanchun, Guan Chunlong. Study on corrosion resistance and wear resistance of new vanadium-containing weather proof steel for building[J]. Iron Steel Vanadium Titanium, 2019, 40(4): 116-120. doi: 10.7513/j.issn.1004-7638.2019.04.022
    [2] Luo Yihua, Huang Yao, Yang Xuefeng, et al. Effect of P elements on mechanical properties and corrosion resistance of high strength weathering steel used in transmission tower[J]. Iron Steel Vanadium Titanium, 2019,40(1):142−147. (罗义华, 黄耀, 杨雪锋, 等. P元素对耐候高强钢铁塔力学性能和腐蚀性能的影响[J]. 钢铁钒钛, 2019,40(1):142−147. doi: 10.7513/j.issn.1004-7638.2019.01.025

    Luo Yihua, Huang Yao, Yang Xuefeng, et al. Effect of P elements on mechanical properties and corrosion resistance of high strength weathering steel used in transmission tower[J]. Iron Steel Vanadium Titanium, 2019, 40(1): 142-147. doi: 10.7513/j.issn.1004-7638.2019.01.025
    [3] Du Fengyin, Jin Zuquan, Zhao Tiejun, et al. Electrochemical chloride extraction from corrosion-resistant steel bar-reinforced concrete[J]. International Journal of Electrochemical Science, 2018,13:7076−7094. doi: 10.20964/2018.07.79
    [4] Xie Qiong, Shi Peiyang, Liu Chengjun, et al. Experimental studies on corrosion behaviour of ferritic stainless steel in HCl based solution[J]. Iron Steel Vanadium Titanium, 2015,36(4):114−118. (解琼, 史培阳, 刘承军, 等. 铁素体不锈钢在盐酸基溶液中的加速腐蚀行为研究[J]. 钢铁钒钛, 2015,36(4):114−118. doi: 10.7513/j.issn.1004-7638.2015.04.020

    Xie Qiong, Shi Peiyang, Liu Chengjun, et al. Experimental studies on corrosion behaviour of ferritic stainless steel in HCl based solution [J]. Iron Steel Vanadium Titanium, 2015, 36(4): 114-118. doi: 10.7513/j.issn.1004-7638.2015.04.020
    [5] Zhou Yu, Ye Yinghua, Xi Jie, et al. Experiment of properties deterioration of air- entrained concrete in seawater-aggressive and freeze-thaw environment[J]. Concrete, 2011,(12):18−20. (周煜, 叶英华, 袭杰, 等. 海水侵蚀环境与冻融交替作用下引气混凝土性能劣化试验[J]. 混凝土, 2011,(12):18−20. doi: 10.3969/j.issn.1002-3550.2011.12.006

    Zhou Yu, Ye Yinghua, Xi Jie, et al. Experiment of properties deterioration of air- entrained concrete in seawater-aggressive and freeze-thaw environment[J]. Concrete, 2011(12): 18-20. doi: 10.3969/j.issn.1002-3550.2011.12.006
    [6] Bao Huiming, Zhao Xuewen, Xiong Xin, et al. Study of sisal fiber concrete 's anti- erosion property in marine environment[J]. Concrete, 2012,(6):23−24. (包惠明, 赵学文, 熊鑫, 等. 海洋环境下剑麻纤维混凝土抗侵蚀试验研究[J]. 混凝土, 2012,(6):23−24. doi: 10.3969/j.issn.1002-3550.2012.06.008

    Bao Huiming, Zhao Xuewen, Xiong Xin, et al. Study of sisal fiber concrete 's anti- erosion property in marine environment[J]. Concrete, 2012(6): 23-24. doi: 10.3969/j.issn.1002-3550.2012.06.008
    [7] Qin Fangcheng, Qi Haiquan, Meng Zhengbing, et al. Advances in high corrosion resistant rebar for ocean engineering[J]. Materials Reports, 2022,36(6):158−164. (秦芳诚, 亓海全, 孟征兵, 等. 海洋工程高抗蚀筋材研究进展[J]. 材料导报, 2022,36(6):158−164.

    Qin Fangcheng, Qi Haiquan, Meng Zhengbing, et al. Advances in high corrosion resistant rebar for ocean engineering[J]. Materials Reports, 2022, 36(6): 158-164.
    [8] Sun Lijuan, Liu Bingwei, Sun Yongjuan. Influence of seawater erosion on the mechanical properties and chloride ion transport of fiber concrete[J]. Concrete, 2022,(6):24−28. (孙丽娟, 刘兵伟, 孙永娟. 海水侵蚀对纤维混凝土力学性能和氯离子传输性能的影响[J]. 混凝土, 2022,(6):24−28. doi: 10.3969/j.issn.1002-3550.2022.06.005

    Sun Lijuan, Liu Bingwei, Sun Yongjuan. Influence of seawater erosion on the mechanical properties and chloride ion transport of fiber concrete[J]. Concrete, 2022(6): 24-28. doi: 10.3969/j.issn.1002-3550.2022.06.005
    [9] Liu Tao, Chen Yongfeng, Zhu Libin, et al. Effect of alloy adjustment on corrosion resistance of steel rebar[J]. Journal of Iron and Steel Research, 2022,34(2):156−161. (刘涛, 陈永峰, 朱利斌, 等. 合金调控对钢筋耐蚀性能的影响[J]. 钢铁研究学报, 2022,34(2):156−161.

    Liu Tao, Chen Yongfeng, Zhu Libin, et al. Effect of alloy adjustment on corrosion resistance of steel rebar[J]. Journal of Iron and Steel Research, 2022, 34(2): 156-161.
    [10] Ai Zhiyong, Sun Wei, Jiang Jinyang. Recent status of research on corrosion of low alloy corrosion resistant steel and analysis on existing eroblems[J]. Corrosion Science and Protection Technology, 2015,27(6):525−536. (艾志勇, 孙伟, 蒋金洋. 低合金耐蚀钢筋锈蚀研究现状及存在的问题分析[J]. 腐蚀科学与防护技术, 2015,27(6):525−536.

    Ai Zhiyong, Sun Wei, Jiang Jinyang. Recent status of research on corrosion of low alloy corrosion resistant steel and analysis on existing eroblems[J]. Corrosion Science and Protection Technology, 2015, 27(6): 525-536.
    [11] 田玉琬. 海工用高强耐蚀钢筋的腐蚀机理及阻锈剂研究[D]. 北京: 北京科技大学, 2021.

    Tian Yuwan. Study on corrosion mechanism of the high-strength corrosion-resistance steel reinforcement and inhibitor in marine structures [D]. Beijing: University of Science and Technology Beijing, 2021.
    [12] Chen Huande, Ma Han, Zhang Yu, et al. Microstructure and tensile properties of 00Cr10MoV corrosion resistant rebar for ocean engineering[J]. Transaction of Materials and Heat Treament, 2019,40(5):103−108. (陈焕德, 麻晗, 张宇, 等. 海洋工程用00Cr10MoV耐蚀钢筋的组织及拉伸性能[J]. 材料热处理学报, 2019,40(5):103−108.

    Chen Huande, Ma Han, Zhang Yu, et al. Microstructure and tensile properties of 00 Cr10 MoV corrosion resistant rebar for ocean engineering[J]. Transaction of Materials and Heat Treament, 2019, 40(5): 103-108.
    [13] 甘玲. 高强耐蚀钢筋在氯盐环境下的腐蚀行为[D]. 马鞍山: 安徽工业大学, 2017.

    Gan Ling. Corrosion behavior of high-strength corrosion resistant rebar in a solution of chlorine salt[D]. Ma, anshan: Anhui University of Technology, 2017.
    [14] Chen Xinhua, Dong Junhua, Han Enhou, et al. Effect of Cu-Mn on the corrosion performance of carbon steels in wet/ dry environments[J]. Materials Protection, 2007,40(10):19−22,93-94. (陈新华, 董俊华, 韩恩厚, 等. 干湿交替环境下Cu、Mn合金化对低合金钢腐蚀行为的影响[J]. 材料保护, 2007,40(10):19−22,93-94. doi: 10.3969/j.issn.1001-1560.2007.10.006

    Chen Xinhua, Dong Junhua, Han Enhou, et al. Effect of Cu-Mn on the corrosion performance of carbon steels in wet/ dry environments [J]. Materials Protection, 2007, 40(10): 19-22, 93-94. doi: 10.3969/j.issn.1001-1560.2007.10.006
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  462
  • HTML全文浏览量:  194
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-23
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回