中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

回火温度对低碳高合金轴承钢组织及冲击性能的影响

吴志伟 武雪婷 张军 李伟

吴志伟, 武雪婷, 张军, 李伟. 回火温度对低碳高合金轴承钢组织及冲击性能的影响[J]. 钢铁钒钛, 2023, 44(3): 138-143. doi: 10.7513/j.issn.1004-7638.2023.03.021
引用本文: 吴志伟, 武雪婷, 张军, 李伟. 回火温度对低碳高合金轴承钢组织及冲击性能的影响[J]. 钢铁钒钛, 2023, 44(3): 138-143. doi: 10.7513/j.issn.1004-7638.2023.03.021
Wu Zhiwei, Wu Xueting, Zhang Jun, Li Wei. Effect of tempering temperature on microstructure and impact properties of low-carbon high-alloy bearing steel[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 138-143. doi: 10.7513/j.issn.1004-7638.2023.03.021
Citation: Wu Zhiwei, Wu Xueting, Zhang Jun, Li Wei. Effect of tempering temperature on microstructure and impact properties of low-carbon high-alloy bearing steel[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 138-143. doi: 10.7513/j.issn.1004-7638.2023.03.021

回火温度对低碳高合金轴承钢组织及冲击性能的影响

doi: 10.7513/j.issn.1004-7638.2023.03.021
基金项目: 四川省科技计划项目(高品质高温含钒轴承钢研制,编号:2022YFG0097)
详细信息
    作者简介:

    吴志伟,1991年出生,男,四川泸州人,博士,工程师,主要从事高端轴承齿轮钢的研究,E-mail:mrzhiwei_wu@163.com

    通讯作者:

    张军,1989年出生,男,四川广安人,博士,高级工程师,主要从事高端特殊钢材料的研究,E-mail:jzhangj@mail.ustc.edu.cn

  • 中图分类号: TF76,TG156.5

Effect of tempering temperature on microstructure and impact properties of low-carbon high-alloy bearing steel

  • 摘要: 以低碳高合金轴承钢为研究对象,通过OM、SEM、XRD等手段,研究了回火温度对显微组织和冲击韧性的影响。结果表明,低碳高合金轴承钢分别经过200、300、400、500 ℃回火处理后,金相显微组织均为回火马氏体+残余奥氏体;600 ℃和700 ℃回火处理后,马氏体组织发生退化,金相显微组织均为回火索氏体+残余奥氏体。低碳高合金轴承钢在200~700 ℃温度区间回火处理后,300 ℃回火冲击韧性最高,600 ℃回火冲击韧性最低,回火温度不宜超过500 ℃。低碳高合金轴承钢在200~500 ℃回火后断口特征均为准解离断裂,600 ℃和700 ℃回火表现为明显的脆性断裂特征。
  • 图  1  不同回火温度下的金相组织

    (a) 200 ℃; (b) 300 ℃; (c) 400 ℃; (d) 500 ℃; (e) 600 ℃; (f) 700 ℃

    Figure  1.  Optical microstructures of tested steel at different tempering temperatures

    图  2  不同回火温度下的XDR图谱

    Figure  2.  XRD patterns of tested steel at different tempering temperatures

    图  3  不同回火温度下的残余奥氏体含量

    Figure  3.  Retained austenite contents of tested steel at different tempering temperatures

    图  4  不同回火温度下的冲击韧性值

    Figure  4.  Impact toughness values of tested steel at different tempering temperatures

    图  5  不同回火温度下的SEM组织

    (a) 200 ℃; (b) 300 ℃; (c) 400 ℃; (d) 500 ℃; (e) 600 ℃; (f) 700 ℃

    Figure  5.  SEM microstructures of tested steel at different tempering temperatures

    图  6  不同回火温度的断口形貌

    (a) 200 ℃; (b) 300 ℃; (c) 400 ℃; (d) 500 ℃; (e) 600 ℃; (f) 700 ℃

    Figure  6.  Fracture morphologies of tested steel at different tempering temperatures

    表  1  试验钢化学成分

    Table  1.   Chemical composition of tested steel %

    CCrNiCoMoVFe
    0.1413.52.012.54.60.60余量
    下载: 导出CSV
  • [1] Li Zhaokun, Lei Jianzhong, Xu Haifeng, et al. Current status and development trend of bearing steel in China and abroad[J]. Journal of Iron and Steel Research, 2016,28(3):1−12. (李昭昆, 雷建中, 徐海峰, 等. 国内外轴承钢的现状与发展趋势[J]. 钢铁研究学报, 2016,28(3):1−12. doi: 10.13228/j.boyuan.issn1001-0963.20150345

    Li Zhaokun, Lei Jianzhong, Xu Haifeng, et al. Current status and development trend of bearing steel in China and abroad[J]. Journal of Iron and Steel Research, 2016, 28(3): 1-12. DOI: 10.13228/j.boyuan.issn1001-0963.20150345.
    [2] Maloney James L, Tomasello Colleen M. Case carburized stainless steel alloy for high temperature applications: EPO, EP0664342[P]. 1995-07-26.
    [3] Geng Siyuan, Yang Maosheng, Zhao Kunyu. Fatigue crack initiation and propagation behavior of high cobalt molybdenum stainless bearing steel[J]. Journal of Iron and Steel Research, 2018,30(11):906−915. (耿思远, 杨卯生, 赵昆渝. 高钴钼不锈轴承钢疲劳裂纹萌生及扩展行为[J]. 钢铁研究学报, 2018,30(11):906−915. doi: 10.13228/j.boyuan.issn1001-0963.20180053

    Geng Siyuan, Yang Maosheng, Zhao Kunyu. Fatigue crack initiation and propagation behavior of high cobalt molybdenum stainless bearing steel[J]. Journal of Iron and Steel Research, 2018, 30(11): 906-915. DOI: 10.13228/j.boyuan.issn1001-0963.20180053.
    [4] Xiao Maoguo, Lv Xinyang, Li Donghui, et al. Strengthening and toughening mechanisms of high Cr-Co-Mo heat resistant bearing steel[J]. Transactions of Materials and Heat Treatment, 2018,39(9):52−57. (肖茂果, 吕新杨, 李东辉, 等. 高Cr-Co-Mo高温轴承钢的强韧化机制[J]. 材料热处理学报, 2018,39(9):52−57. doi: 10.13289/j.issn.1009-6264.2018-0176

    Xiao Maoguo, Lv Xinyang, Li Donghui, et al. Strengthening and toughening mechanisms of high Cr-Co-Mo heat resistant bearing steel[J]. Transactions of Materials and Heat Treatment, 2018, 39(9): 52-57. DOI: 10.13289/j.issn.1009-6264.2018-0176.
    [5] Yuan Xiaohong, Zheng Shanju, Yang Maosheng, et al. Carbide precipitation and microstructure refinement of Cr-Co-Mo-Ni bearing steel during hot deformation[J]. Journal of Central South University, 2015,22(9):3265−3274. doi: 10.1007/s11771-015-2865-3
    [6] 尹龙承. 14Cr14Co13Mo4钢Ni缓冲层法渗碳及热处理工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    Yin Longcheng. Ni buffer layer method for carburizing and heat treatment of 14Cr14Co13Mo4 steel[D]. Harbin: Harbin Institute of Technology, 2020.
    [7] 袁晓虹. 高Cr-Co-Mo轴承钢强韧机制及抗疲劳特性的多尺度研究[D]. 昆明: 昆明理工大学, 2015.

    Yuan Xiaohong. Multi-scale strengthening-toughening mechanisms and fatigue resistance of high-alloy Cr-Co-Mo bearing steel[D]. Kunming: Kunming University of Science and Technology, 2015.
    [8] Yuan Xiaohong, Zheng Shanju, Yin Shubiao, et al. Effect of tempering time on microstructure and properties of high temperature bearing steel[J]. Heat Treatment of Metals, 2014,39(10):28−31. (袁晓虹, 郑善举, 阴树标, 等. 回火时间对高温轴承钢组织和性能的影响[J]. 金属热处理, 2014,39(10):28−31. doi: 10.13251/j.issn.0254-6051.2014.10.007

    Yuan Xiaohong, Zheng Shanju, Yin Shubiao, et al. Effect of tempering time on microstructure and properties of high temperature bearing steel[J]. Heat Treatment of Metals, 2014, 39(10): 28-31. DOI: 10.13251/j.issn.0254-6051.2014.10.007.
    [9] Wen Tao, Hu Xiaofeng, Song Yuanyuan, et al. Effect of tempering temperature on carbide and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel[J]. Acta Metallurgica Sinica, 2014,50(4):447−453. (温涛, 胡小锋, 宋元元, 等. 回火温度对一种Fe-Cr-Ni-Mo高强钢碳化物及其力学性能的影响[J]. 金属学报, 2014,50(4):447−453. doi: 10.3724/sp.j.1037.2013.00672

    Wen Tao, Hu Xiaofeng, Song Yuanyuan, et al. Effect of tempering temperature on carbide and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel[J]. Acta Metallurgica Sinica, 2014, 50(4): 447-453. DOI: 10.3724/sp.j.1037.2013.00672.
    [10] Yu Bin, Li Xiaoyuan, Shi Jie, et al. Effect of high temperature tempering on microstructure and mechanical properties of GCr15SiMn bearing steel[J]. Heat Treatment of Metals, 2015,40(2):176−179. (余斌, 李晓源, 时捷, 等. 高温回火对GCr15SiMn轴承钢组织和力学性能的影响[J]. 金属热处理, 2015,40(2):176−179. doi: 10.13251/j.issn.0254-6051.2015.02.039

    Yu Bin, Li Xiaoyuan, Shi Jie, et al. Effect of high temperature tempering on microstructure and mechanical properties of GCr15 SiMn bearing steel[J]. Heat Treatment of Metals, 2015, 40(2): 176-179. DOI: 10.13251/j.issn.0254-6051.2015.02.039.
    [11] Yajima E, Miyazaki T, Sugiyama T, et al. Effects of retained austenite on the rolling fatigue life of ball bearing steels[J]. Transactions of the Japan Institute of Metals, 2007,15(3):173−179.
    [12] Zhang Yan, Zhao Aimin, He Jianguo, et al. Effects of tempering temperature on microstructure and properties of Cr8Ni2MoNb steel[J]. Heat Treatment of Metals, 2015,40(3):114−116. (张岩, 赵爱民, 何建国, 等. 回火温度对Cr8Ni2MoNb钢组织与性能的影响[J]. 金属热处理, 2015,40(3):114−116. doi: 10.13251/j.issn.0254-6051.2015.03.026

    Zhang Yan, Zhao Aimin, He Jianguo, et al. Effects of tempering temperature on microstructure and properties of Cr8 Ni2 MoNb steel[J]. Heat Treatment of Metals, 2015(3): 114-116. DOI: 10.13251/j.issn.0254-6051.2015.03.026.
    [13] 章守华. 合金钢[M]. 北京: 冶金工业出版社, 1981.

    Zhang Shouhua. Alloy steel[M]. Beijing: Metallurgical Industry Press, 1981.
    [14] 黄慧玲. 含钴高性能高速钢回火组织和性能演变研究[D]. 南京: 东南大学, 2015.

    Huang Huiling. Study on the tempering microstructure and performance of high speed steel containing cobalt[D]. Nanjing: Southeast University, 2015.
    [15] Yong Qilong, Sun Xinjun, Zheng Lei, et al. Role of the second phase in iron and steel materials[J]. Science and Technology Innovation Herald, 2009,(8):2−3. (雍岐龙, 孙新军, 郑磊, 等. 钢铁材料中第二相的作用[J]. 科技创新导报, 2009,(8):2−3. doi: 10.16660/j.cnki.1674-098x.2009.08.002

    Yong Qilong, Sun Xinjun, Zheng Lei, et al. Role of the second phase in iron and steel materials[J]. Science and Technology Innovation Herald, 2009(8): 2-3. DOI:10.16660/j.cnki.1674-098 x.2009.08.002.
    [16] Sun Chen, Fu Paixin, Liu Hongwei, et al. Effect of tempering temperature on the low temperature impact toughness of 42CrMo4-V steel[J]. Metals, 2018,8(4):232. doi: 10.3390/met8040232
    [17] Yan Peng, Liu Zhengdong, Bao Hansheng, et al. Effect of tempering temperature on the toughness of 9Cr–3W–3Co martensitic heat resistant steel[J]. Materials & Design, 2014,54:874−879. doi: 10.1016/j.matdes.2013.09.017
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  401
  • HTML全文浏览量:  114
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-25
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回