中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双通道感应加热中间包控流装置模拟优化

高文星 袁己百 赫俊峰 梁日成 李源源

高文星, 袁己百, 赫俊峰, 梁日成, 李源源. 双通道感应加热中间包控流装置模拟优化[J]. 钢铁钒钛, 2023, 44(3): 144-151. doi: 10.7513/j.issn.1004-7638.2023.03.022
引用本文: 高文星, 袁己百, 赫俊峰, 梁日成, 李源源. 双通道感应加热中间包控流装置模拟优化[J]. 钢铁钒钛, 2023, 44(3): 144-151. doi: 10.7513/j.issn.1004-7638.2023.03.022
Gao Wenxing, Yuan Jibai, He Junfeng, Liang Richeng, Li Yuanyuan. Optimization of flow control device on twin channel induction heating tundish by simulation[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 144-151. doi: 10.7513/j.issn.1004-7638.2023.03.022
Citation: Gao Wenxing, Yuan Jibai, He Junfeng, Liang Richeng, Li Yuanyuan. Optimization of flow control device on twin channel induction heating tundish by simulation[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 144-151. doi: 10.7513/j.issn.1004-7638.2023.03.022

双通道感应加热中间包控流装置模拟优化

doi: 10.7513/j.issn.1004-7638.2023.03.022
基金项目: 国家自然科学基金资助项目(52004191)。
详细信息
    作者简介:

    高文星,1983年出生,男,福建邵武人,硕士,高级工程师,主要工作方向:连铸工程设计与铸坯质量控制,E-mail:82874@wisdri.com

  • 中图分类号: TF777.1

Optimization of flow control device on twin channel induction heating tundish by simulation

  • 摘要: 为解决双通道感应加热中间包原型死区体积比大,平均停留时间短,各铸流差异性大的问题,设计了不同导流孔方案的挡墙和加热通道,并通过数值模拟中间包的流场和温度场。结果表明,在中间包内设挡墙可以很好地改善钢液流动状况。A2方案(八字型挡墙上开两个导流孔,孔径130 mm,与挡墙水平倾角5°,下孔仰角25°,上孔仰角15°)平均停留时间延长了207.2 s,死区体积降低了23.89个百分点,边部水口与中间水口的最大温差为3 ℃。椭圆跑道型加热通道(E2方案)对中间包加热效果更好。通过生产实践证明边部水口与中间水口的最大温差约为3~4 ℃,优化的控流装置改善了中间包的流动性和差异性。
  • 图  1  感应加热中间包内衬结构

    Figure  1.  Refractory of tundish with induction heating configuration

    图  2  通道式感应加热模拟方案(原型)示意(单位:mm)

    Figure  2.  Schematic diagram of twin channel type induction heating simulation scheme

    图  3  原型包与采用A1方案的中间包三维流线

    Figure  3.  3D streamline diagram of tundish without wall and with A1 scheme

    图  4  不同类型挡墙的中间包流体RTD曲线

    Figure  4.  RTD curves of flow liquid in tundish with different type walls

    图  5  原型包与A2方案整体温度等值分布

    Figure  5.  Temperature equivalent distribution of tundish without wall and scheme A2

    图  6  不同加热通道方案中间包整体温度等值分布

    Figure  6.  Equivalent distribution diagram of overall temperature in tundish under different heating twin channel schemes

    图  7  方案A2数模与水模的 RTD 曲线比较

    Figure  7.  Comparison of RTD curves between numerical and water simulation in scheme A2

    图  8  方案A2中间包的水模与数模的流体流动状态对比

    Figure  8.  Comparison of fluid flow state between numerical and water simulation in scheme A2

    表  1  感应加热中间包工艺参数与钢液物性参数

    Table  1.   Process parameters of tundish with induction heating and physical parameters of molten steel

    中间包
    容量/t
    钢包长水口
    直径/mm
    感应加热通道
    长度/mm
    生产铸坯断
    面/(mm×mm)
    设计拉速/
    (m·min−1)
    密度/
    (kg·m−3)
    粘度/
    (Pa·s)
    热容量/
    [J·(kg·K)−1]
    传热系数/
    [W·(m·K)−1]
    5475~1560390×4800.43~0.4970000.006575041
    下载: 导出CSV

    表  2  挡墙导流孔结构方案

    Table  2.   Structural scheme of different wall diversion holes and heating twin channels

    方案设计差异
    原型无挡墙
    A1八字形挡墙,导流孔与挡墙水平倾角5°,下孔仰角25°,
    上孔仰角20°
    A2八字形挡墙,导流孔与挡墙水平倾角5°,下孔仰角25°,
    上孔仰角15°
    B1八字形挡墙,导流孔与挡墙垂直,下孔仰角25°,
    上孔仰角20°
    B2八字形挡墙,导流孔与挡墙垂直,下孔仰角25°,
    上孔仰角15°
    下载: 导出CSV

    表  3  不同类型挡墙的RTD曲线的分析结果

    Table  3.   Analysis results of RTD curves under different type walls

    方案出水口响应时间/s峰值时间/s每流平均停留
    时间/s
    中间包总体平均
    停留时间/s
    活塞区体积比/%死区体积比/%全混流体积比/%各流示踪剂浓度
    总体平均标准差
    原型1流2225981354.91041.437.2334.6428.120.0097
    2流82.5365995.8
    3流82.5360989.3
    4流2196121364.3
    A11流227925.51170.91214.13713.2144.390.0047
    2流20710391280.8
    3流2081067.51249.5
    4流2208521161
    A21流2329031215.81248.638.1410.7551.110.0048
    2流221.511021317.3
    3流255.51074.51315.2
    4流211.5812.51148.3
    B11流244.5928.511811216.634.6213.0452.340.0037
    2流210.51054.51261.5
    3流219.510191246.4
    4流222.58851179.3
    B21流225.5911.51172.51212.933.4313.353.270.0039
    2流22611041266.6
    3流23410671244.1
    4流2268781169.6
    下载: 导出CSV

    表  4  中间包内边流与中间流的钢水温度

    Table  4.   Temperature difference between different strands in tundish

    大包重量/t中间包重量/t边流温度/℃中间流温度/℃温差/℃
    11552152315194
    9151152415204
    4254151915163
    下载: 导出CSV
  • [1] Wang Qiang, He Ming, Zhu Xiaowei, et al. Study and development on numerical simulation for application of electromagnetic field technology in metallurgical processes[J]. Acta Metallurgica Sinica, 2018,54(2):228−246. (王强, 何明, 朱晓伟, 等. 电磁场技术在冶金领域应用的数值模拟研究进展[J]. 金属学报, 2018,54(2):228−246. doi: 10.11900/0412.1961.2017.00360

    Wang Qiang, He Ming, Zhu Xiaowei, et al. Study and development on numerical simulation for application of electromagnetic field technology in metallurgical processes[J]. Acta Metallurgica Sinica, 2018, 54(2): 228-246. doi: 10.11900/0412.1961.2017.00360
    [2] Pan Dong, Guo Qingtao, Yu Fuzhi, et al. Research and application progress of electromagnetic induction heating technology in tundish[J]. Continuous Casting, 2022,41(4):2−7. (潘栋, 郭庆涛, 于赋志, 等. 中间包电磁感应加热技术研究及应用进展[J]. 连铸, 2022,41(4):2−7.

    Pan Dong, Guo Qingtao, Yu Fuzhi , et al. Research and application progress of electromagnetic induction heating technology in tundish[J]. Continuous Casting, 2022, 41(4): 2-7.
    [3] Tang Haiyan, Liu Jinwen, Wang Kaimin, et al. Progress and perspective of functioned continuous castingtundish through heating and temperature control[J]. Acta Metallurgica Sinica, 2021,57(10):1229−1245. (唐海燕, 刘锦文, 王凯民, 等. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021,57(10):1229−1245. doi: 10.11900/0412.1961.2021.00046

    Tang Haiyan, Liu Jinwen, Wang Kaimin, et al. Progress and perspective of functioned continuous castingtundish through heating and temperature control[J]. Acta Metallurgica Sinica, 2021, 57(10): 1229-1245. doi: 10.11900/0412.1961.2021.00046
    [4] Chen Xiqing, Xiao Hong, Wang Pu, et al. Three-dimensional magneto-hydrothermal coupling model of twin-channel tundish with induction heating[J]. Iron and Steel, 2021,56(6):48−58. (陈希青, 肖红, 王璞, 等. 双通道感应加热中间包的三维磁流热耦合模型[J]. 钢铁, 2021,56(6):48−58. doi: 10.13228/j.boyuan.issn0449-749x.20200502

    Chen Xiqing, Xiao Hong, Wang Pu, et al. Three-dimensional magneto-hydrothermal coupling model of twin-channel tundish with induction heating[J]. Iron and Steel, 2021, 56(6): 48-58. doi: 10.13228/j.boyuan.issn0449-749x.20200502
    [5] Yu Hui, Shi Zhipeng, Wang Hongguo, et al. Research on metallurgical effect of double-channel electromagnetic induction heating tundish[J]. Steelmaking, 2022,38(3):37−42. (余慧, 史志鹏, 王红国, 等. 双通道式电磁感应加热中间包冶金效果研究[J]. 炼钢, 2022,38(3):37−42. doi: 10.3969/j.issn.1002-1043.2022.3.lg202203008

    Yu Hui, Shi Zhipeng, Wang Hongguo, et al. Research on metallurgical effect of double-channel electromagnetic induction heating tundish[J]. Steelmaking, 2022, 38(3): 37-42. doi: 10.3969/j.issn.1002-1043.2022.3.lg202203008
    [6] 陈远清, 仇圣桃. T形中间包新型控流装置的模拟及试验[J]. 钢铁, 2018, 53(7): 45-49.

    Chen Yuanqing, Qiu Shengtao. Modeling and industrial test on new type of flow control device for T-shape tundish[J]. Iron and Steel, 2018, 53(7): 45-49.
    [7] Li Xiaosong, Tang Haiyan, Hu Qun, et al. Physical simulation on fluid flow consistence in tundish with asymmetric flow control device[J]. China Metallurgy, 2020,30(10):28−35. (李小松, 唐海燕, 胡群, 等. 非对称控流结构中间包流场一致性的物理模拟[J]. 中国冶金, 2020,30(10):28−35. doi: 10.13228/j.boyuan.issn1006-9356.20200096

    Li Xiaosong, Tang Haiyan, Hu Qun, et al. Physical simulation on fluid flow consistence in tundish with asymmetric flow control device[J]. China Metallurgy, 2020, 30(10): 28-35. doi: 10.13228/j.boyuan.issn1006-9356.20200096
    [8] Wang Kaimin, Tang Haiyan, Xiao Hong, et al. Control on flow of molten steel in a 6-strand tundish with dual channel induction heating[J]. China Metallurgy, 2022,32(2):84−91. (王凯民, 唐海燕, 肖红, 等. 六流双通道感应加热中间包钢水流动控制[J]. 中国冶金, 2022,32(2):84−91. doi: 10.13228/j.boyuan.issn1006-9356.20210430

    Wang Kaimin, Tang Haiyan, Xiao Hong, et al. Control on flow of molten steel in a 6-strand tundish with dual channel induction heating[J]. China Metallurgy, 2022, 32(2): 84-91. doi: 10.13228/j.boyuan.issn1006-9356.20210430
    [9] Yang Shufeng, Wu Jinqiang, Li Jingshe, et al. Physical simulation on optimization of flow control devices in four strand tundish[J]. China Metallurgy, 2019,29(4):81−87. (杨树峰, 吴金强, 李京社, 等. 四流中间包控流装置优化物理模拟[J]. 中国冶金, 2019,29(4):81−87. doi: 10.13228/j.boyuan.issn1006-9356.20190086

    Yang Shufeng, Wu Jinqiang, Li Jingshe, et al.Physical simulation on optimization of flow control devices in four strand tundish[J]. China Metallurgy, 2019, 29(4): 81-87. doi: 10.13228/j.boyuan.issn1006-9356.20190086
    [10] Ma Yu, Tang Haiyan, Zhang Shuo, et al. Water modelling on a five-strand tundish with channel induction heating for better flow field[J]. Iron and Steel, 2020,55(11):57−64. (马钰, 唐海燕, 张硕, 等. 通道式感应加热五流中间包流场的水力学模拟[J]. 钢铁, 2020,55(11):57−64. doi: 10.13228/j.boyuan.issn0449-749x.20200061

    Ma Yu, Tang Haiyan, Zhang Shuo, et al. Water modelling on a five-strand tundish with channel induction heating for better flow field[J]. Iron and Steel, 2020, 55(11): 57-64. doi: 10.13228/j.boyuan.issn0449-749x.20200061
    [11] Zhang Shuo, Tang Haiyan, Liu Jinwen, et al. Structural optimization of a six-strand H-type channel induction heating tundish[J]. Journal of Iron and Steel Research, 2019,31(9):787−794. (张硕, 唐海燕, 刘锦文, 等. 六流H型双通道感应加热中间包的结构优化[J]. 钢铁研究学报, 2019,31(9):787−794.

    Zhang Shuo, Tang Haiyan, Liu Jinwen , et al. Structural optimization of a six-strand H-type channel induction heating tundish[J]. Journal of Iron and Steel Research, 2019, 31(9): 787-794.
    [12] Wu Guanghui, Tang Haiyan, Xiao Hong, et al. Physical simulation on a 7-strand continuous casting tundish with channel type induction heating[J]. Iron and Steel, 2017,52(11):20−26. (吴光辉, 唐海燕, 肖红, 等. 通道式感应加热7流中间包流场的物理模拟[J]. 钢铁, 2017,52(11):20−26. doi: 10.13228/j.boyuan.issn0449-749x.20170153

    Wu Guanghui, Tang Haiyan, Xiao Hong, et al. Physical simulation on a 7-strand continuous casting tundish with channel type induction heating[J]. Iron and Steel, 2017, 52(11): 20-26. doi: 10.13228/j.boyuan.issn0449-749x.20170153
    [13] Yuan Jibai, Ma Zhimin, Yin Pan, et al. Design of flow control device on 4-strand H-type double channels tundish with induction heating[J]. Continuous Casting, 2022,40(6):85−90. (袁己百, 马志民, 殷攀, 等. 四流H型感应加热中间包控流装置设计[J]. 连铸, 2022,40(6):85−90.

    Yuan Jibai, Ma Zhimin, Yin Pan, et al. Design of flow control device on 4-strand H-type double channels tundish with induction heating[J]. Continuous Casting, 2022, 40(6): 85-90.
    [14] Zhang Xiaomeng, Li Shaoxiang, Tang Haiyan, et al. Metallurgical effects of an asymmetric tundish during steady casting and ladle change period[J]. Journal of Iron and Steel Research, 2019,31(1):15−23. (张晓萌, 李少翔, 唐海燕, 等. 非对称中间包稳态浇铸与换包操作的冶金效果[J]. 钢铁研究学报, 2019,31(1):15−23. doi: 10.13228/j.boyuan.issn1001-0963.20180160

    Zhang Xiaomeng, Li Shaoxiang, Tang Haiyan, et al. Metallurgical effects of an asymmetric tundish during steady casting and ladle change period[J]. Journal of Iron and Steel Research, 2019, 31(1): 15-23. doi: 10.13228/j.boyuan.issn1001-0963.20180160
    [15] 安航航, 韩传基, 季 维, 等. 八流中间包内钢液流动和传热特性的研究[J]. 炼钢, 2012, 28(3): 61-65.

    An Hanghang, Han Chuanji, Ji Wei, et al. Study on flowability and heat transfer characteristics of eight-strand tundish[J]. Steelmaking, 2012, 28(3): 61-65.
    [16] Gao Tian, Wang Cong, Sun Mingfei, et al. Numerical simulation of structural optimization and inclusion removal in single strand tundish[J]. Steelmaking, 2022,38(2):43−48. (高天, 王聪, 孙明飞, 等. 单流中间包结构优化及夹杂物去除数值模拟研究[J]. 炼钢, 2022,38(2):43−48. doi: 10.3969/j.issn.1002-1043.2022.2.lg202202008

    Gao Tian, Wang Cong, Sun Mingfei, et al. Numerical simulation of structural optimization and inclusion removal in single strand tundish[J]. Steelmaking, 2022, 38(2): 43-48. doi: 10.3969/j.issn.1002-1043.2022.2.lg202202008
    [17] Tang Haiyan, Li Xiaosong, Zhang Shuo, et al. Fluid flow and heat transfer in a tundish with channel induction heating for sequence casting with a constant superheat control[J]. Acta Metallurgica Sinica, 2020,56(12):1629−1642. (唐海燕, 李小松, 张硕, 等. 基于恒过热控制的感应加热中间包内钢水的流动与传热[J]. 金属学报, 2020,56(12):1629−1642. doi: 10.11900/0412.1961.2020.00194

    Tang Haiyan, Li Xiaosong, Zhang Shuo, et al. Fluid flow and heat transfer in a tundish with channel induction heating for sequence casting with a constant superheat control[J]. Acta Metallurgica Sinica, 2020, 56(12): 1629-1642. doi: 10.11900/0412.1961.2020.00194
    [18] Xing Fei, Zheng Shuguo, Zhu Miaoyong. Numerical simulation of effect of channel tilt angle on induction heating tundish[J]. Steelmaking, 2019,35(3):27−33. (邢飞, 郑淑国, 朱苗勇. 通道倾角对感应加热中间包影响的数值模拟[J]. 炼钢, 2019,35(3):27−33.

    Xing Fei, Zheng Shuguo, Zhu Miaoyong. Numerical simulation of effect of channel tilt angle on induction heating tundish[J]. Steelmaking, 2019, 35(3): 27-33.
    [19] Luo Ronghua, Ni Hongwei, Zhang Hua, et al. Numerical and physical simulation on optimization of flow control devices in tundish for five-strand bloom casting[J]. Special Steel, 2012,33(4):13−17. (罗荣华, 倪红卫, 张华, 等. 五流大方坯中间包控流装置优化的数值和物理模拟[J]. 特殊钢, 2012,33(4):13−17. doi: 10.3969/j.issn.1003-8620.2012.04.004

    Luo Ronghua, Ni Hongwei, Zhang Hua, et al. Numerical and physical simulation on optimization of flow control devices in tundish for five-strand bloom casting[J]. Special Steel, 2012, 33(4): 13-17. doi: 10.3969/j.issn.1003-8620.2012.04.004
    [20] Ma Zhimin, Wang Jiahui, Fang Qing, et al. Physical simulation on optimization of baffles in an induction heating tundish[J]. Continuous Casting, 2022,41(4):78−86. (马志民, 王家辉, 方庆, 等. 通道式感应加热中间包挡墙优化的物理模拟[J]. 连铸, 2022,41(4):78−86.

    Ma Zhimin, Wang Jiahui, Fang Qing, et al. Physical simulation on optimization of baffles in an induction heating tundish[J]. Continuous Casting, 2022, 41(4): 78-86.
    [21] Deng Wei, Niu Shuai, Yang Enjiao, et al. Study on an identical metallurgical effect for multi strand tundish during special steel bloom casting[J]. Journal of Iron and Steel Research, 2021,33(11):1144−1153. (邓伟, 牛帅, 杨恩蛟, 等. 特殊钢大方坯连铸中间包各流冶金效果一致性研究[J]. 钢铁研究学报, 2021,33(11):1144−1153. doi: 10.13228/j.boyuan.issn1001-0963.20210241

    Deng Wei, Niu Shuai, Yang Enjiao, et al. Study on an identical metallurgical effect for multi strand tundish during special steel bloom casting[J]. Journal of Iron and Steel Research, 2021, 33(11): 1144-1153. doi: 10.13228/j.boyuan.issn1001-0963.20210241
    [22] Wang Ning, Li Baokuan, Qi Fengsheng, et al. Flow field and temperature rising characteristics of butterfly induction heating tundish[J]. Journal of Northeastern University(Natural Science), 2021,42(12):1724−1730. (王宁, 李宝宽, 齐凤升, 等. 蝶式感应加热中间包流场与升温特性[J]. 东北大学学报(自然科学版), 2021,42(12):1724−1730. doi: 10.12068/j.issn.1005-3026.2021.12.008

    Wang Ning, Li Baokuan, Qi Fengsheng, et al. Flow field and temperature rising characteristics of butterfly induction heating tundish[J]. Journal of Northeastern University(Natural Science), 2021, 42(12): 1724-1730. doi: 10.12068/j.issn.1005-3026.2021.12.008
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  226
  • HTML全文浏览量:  81
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-24
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回