Optimization of flow control device on twin channel induction heating tundish by simulation
-
摘要: 为解决双通道感应加热中间包原型死区体积比大,平均停留时间短,各铸流差异性大的问题,设计了不同导流孔方案的挡墙和加热通道,并通过数值模拟中间包的流场和温度场。结果表明,在中间包内设挡墙可以很好地改善钢液流动状况。A2方案(八字型挡墙上开两个导流孔,孔径130 mm,与挡墙水平倾角5°,下孔仰角25°,上孔仰角15°)平均停留时间延长了207.2 s,死区体积降低了23.89个百分点,边部水口与中间水口的最大温差为3 ℃。椭圆跑道型加热通道(E2方案)对中间包加热效果更好。通过生产实践证明边部水口与中间水口的最大温差约为3~4 ℃,优化的控流装置改善了中间包的流动性和差异性。Abstract: In order to solve the problems of low volume utilization, short average residence time and poor consistency of each flow of the twin channel induction heating tundish without flow control devices, weirs with different diversion holes and heating twin channels were designed. The flow field and temperature field of tundish are simulated by numerical simulation and water simulation. Simulation results show that the flow of molten steel can be improved by setting a wall in the tundish. For Scheme A2 (two diversion holes are opened on the splayed wall, with diameter of 130 mm and a horizontal inclination of 5° to the retaining wall, an elevation of 25° for the lower hole and 15° for the upper hole), the average residence time is extended by 207.2 s, the dead zone volume is reduced by 23.89%, and the maximum temperature difference between the edge nozzle and the middle nozzle is 3 ℃. Scheme E2 (Runway type heating twin channel) can achieve better heating effect on tundish. The production practice has proved that the maximum temperature difference between the edge water outlet and the middle water outlet is about 3~4 ℃.The optimized flow control device improves the fluidity inside the tundish.
-
Key words:
- tundish /
- induction heating /
- flow control device /
- temperature field /
- flow field
-
表 1 感应加热中间包工艺参数与钢液物性参数
Table 1. Process parameters of tundish with induction heating and physical parameters of molten steel
中间包
容量/t钢包长水口
直径/mm感应加热通道
长度/mm生产铸坯断
面/(mm×mm)设计拉速/
(m·min−1)密度/
(kg·m−3)粘度/
(Pa·s)热容量/
[J·(kg·K)−1]传热系数/
[W·(m·K)−1]54 75 ~1560 390×480 0.43~0.49 7000 0.0065 750 41 表 2 挡墙导流孔结构方案
Table 2. Structural scheme of different wall diversion holes and heating twin channels
方案 设计差异 原型 无挡墙 A1 八字形挡墙,导流孔与挡墙水平倾角5°,下孔仰角25°,
上孔仰角20°A2 八字形挡墙,导流孔与挡墙水平倾角5°,下孔仰角25°,
上孔仰角15°B1 八字形挡墙,导流孔与挡墙垂直,下孔仰角25°,
上孔仰角20°B2 八字形挡墙,导流孔与挡墙垂直,下孔仰角25°,
上孔仰角15°表 3 不同类型挡墙的RTD曲线的分析结果
Table 3. Analysis results of RTD curves under different type walls
方案 出水口 响应时间/s 峰值时间/s 每流平均停留
时间/s中间包总体平均
停留时间/s活塞区体积比/% 死区体积比/% 全混流体积比/% 各流示踪剂浓度
总体平均标准差原型 1流 222 598 1354.9 1041.4 37.23 34.64 28.12 0.0097 2流 82.5 365 995.8 3流 82.5 360 989.3 4流 219 612 1364.3 A1 1流 227 925.5 1170.9 1214.1 37 13.21 44.39 0.0047 2流 207 1039 1280.8 3流 208 1067.5 1249.5 4流 220 852 1161 A2 1流 232 903 1215.8 1248.6 38.14 10.75 51.11 0.0048 2流 221.5 1102 1317.3 3流 255.5 1074.5 1315.2 4流 211.5 812.5 1148.3 B1 1流 244.5 928.5 1181 1216.6 34.62 13.04 52.34 0.0037 2流 210.5 1054.5 1261.5 3流 219.5 1019 1246.4 4流 222.5 885 1179.3 B2 1流 225.5 911.5 1172.5 1212.9 33.43 13.3 53.27 0.0039 2流 226 1104 1266.6 3流 234 1067 1244.1 4流 226 878 1169.6 表 4 中间包内边流与中间流的钢水温度
Table 4. Temperature difference between different strands in tundish
大包重量/t 中间包重量/t 边流温度/℃ 中间流温度/℃ 温差/℃ 115 52 1523 1519 4 91 51 1524 1520 4 42 54 1519 1516 3 -
[1] Wang Qiang, He Ming, Zhu Xiaowei, et al. Study and development on numerical simulation for application of electromagnetic field technology in metallurgical processes[J]. Acta Metallurgica Sinica, 2018,54(2):228−246. (王强, 何明, 朱晓伟, 等. 电磁场技术在冶金领域应用的数值模拟研究进展[J]. 金属学报, 2018,54(2):228−246. doi: 10.11900/0412.1961.2017.00360Wang Qiang, He Ming, Zhu Xiaowei, et al. Study and development on numerical simulation for application of electromagnetic field technology in metallurgical processes[J]. Acta Metallurgica Sinica, 2018, 54(2): 228-246. doi: 10.11900/0412.1961.2017.00360 [2] Pan Dong, Guo Qingtao, Yu Fuzhi, et al. Research and application progress of electromagnetic induction heating technology in tundish[J]. Continuous Casting, 2022,41(4):2−7. (潘栋, 郭庆涛, 于赋志, 等. 中间包电磁感应加热技术研究及应用进展[J]. 连铸, 2022,41(4):2−7.Pan Dong, Guo Qingtao, Yu Fuzhi , et al. Research and application progress of electromagnetic induction heating technology in tundish[J]. Continuous Casting, 2022, 41(4): 2-7. [3] Tang Haiyan, Liu Jinwen, Wang Kaimin, et al. Progress and perspective of functioned continuous castingtundish through heating and temperature control[J]. Acta Metallurgica Sinica, 2021,57(10):1229−1245. (唐海燕, 刘锦文, 王凯民, 等. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021,57(10):1229−1245. doi: 10.11900/0412.1961.2021.00046Tang Haiyan, Liu Jinwen, Wang Kaimin, et al. Progress and perspective of functioned continuous castingtundish through heating and temperature control[J]. Acta Metallurgica Sinica, 2021, 57(10): 1229-1245. doi: 10.11900/0412.1961.2021.00046 [4] Chen Xiqing, Xiao Hong, Wang Pu, et al. Three-dimensional magneto-hydrothermal coupling model of twin-channel tundish with induction heating[J]. Iron and Steel, 2021,56(6):48−58. (陈希青, 肖红, 王璞, 等. 双通道感应加热中间包的三维磁流热耦合模型[J]. 钢铁, 2021,56(6):48−58. doi: 10.13228/j.boyuan.issn0449-749x.20200502Chen Xiqing, Xiao Hong, Wang Pu, et al. Three-dimensional magneto-hydrothermal coupling model of twin-channel tundish with induction heating[J]. Iron and Steel, 2021, 56(6): 48-58. doi: 10.13228/j.boyuan.issn0449-749x.20200502 [5] Yu Hui, Shi Zhipeng, Wang Hongguo, et al. Research on metallurgical effect of double-channel electromagnetic induction heating tundish[J]. Steelmaking, 2022,38(3):37−42. (余慧, 史志鹏, 王红国, 等. 双通道式电磁感应加热中间包冶金效果研究[J]. 炼钢, 2022,38(3):37−42. doi: 10.3969/j.issn.1002-1043.2022.3.lg202203008Yu Hui, Shi Zhipeng, Wang Hongguo, et al. Research on metallurgical effect of double-channel electromagnetic induction heating tundish[J]. Steelmaking, 2022, 38(3): 37-42. doi: 10.3969/j.issn.1002-1043.2022.3.lg202203008 [6] 陈远清, 仇圣桃. T形中间包新型控流装置的模拟及试验[J]. 钢铁, 2018, 53(7): 45-49.Chen Yuanqing, Qiu Shengtao. Modeling and industrial test on new type of flow control device for T-shape tundish[J]. Iron and Steel, 2018, 53(7): 45-49. [7] Li Xiaosong, Tang Haiyan, Hu Qun, et al. Physical simulation on fluid flow consistence in tundish with asymmetric flow control device[J]. China Metallurgy, 2020,30(10):28−35. (李小松, 唐海燕, 胡群, 等. 非对称控流结构中间包流场一致性的物理模拟[J]. 中国冶金, 2020,30(10):28−35. doi: 10.13228/j.boyuan.issn1006-9356.20200096Li Xiaosong, Tang Haiyan, Hu Qun, et al. Physical simulation on fluid flow consistence in tundish with asymmetric flow control device[J]. China Metallurgy, 2020, 30(10): 28-35. doi: 10.13228/j.boyuan.issn1006-9356.20200096 [8] Wang Kaimin, Tang Haiyan, Xiao Hong, et al. Control on flow of molten steel in a 6-strand tundish with dual channel induction heating[J]. China Metallurgy, 2022,32(2):84−91. (王凯民, 唐海燕, 肖红, 等. 六流双通道感应加热中间包钢水流动控制[J]. 中国冶金, 2022,32(2):84−91. doi: 10.13228/j.boyuan.issn1006-9356.20210430Wang Kaimin, Tang Haiyan, Xiao Hong, et al. Control on flow of molten steel in a 6-strand tundish with dual channel induction heating[J]. China Metallurgy, 2022, 32(2): 84-91. doi: 10.13228/j.boyuan.issn1006-9356.20210430 [9] Yang Shufeng, Wu Jinqiang, Li Jingshe, et al. Physical simulation on optimization of flow control devices in four strand tundish[J]. China Metallurgy, 2019,29(4):81−87. (杨树峰, 吴金强, 李京社, 等. 四流中间包控流装置优化物理模拟[J]. 中国冶金, 2019,29(4):81−87. doi: 10.13228/j.boyuan.issn1006-9356.20190086Yang Shufeng, Wu Jinqiang, Li Jingshe, et al.Physical simulation on optimization of flow control devices in four strand tundish[J]. China Metallurgy, 2019, 29(4): 81-87. doi: 10.13228/j.boyuan.issn1006-9356.20190086 [10] Ma Yu, Tang Haiyan, Zhang Shuo, et al. Water modelling on a five-strand tundish with channel induction heating for better flow field[J]. Iron and Steel, 2020,55(11):57−64. (马钰, 唐海燕, 张硕, 等. 通道式感应加热五流中间包流场的水力学模拟[J]. 钢铁, 2020,55(11):57−64. doi: 10.13228/j.boyuan.issn0449-749x.20200061Ma Yu, Tang Haiyan, Zhang Shuo, et al. Water modelling on a five-strand tundish with channel induction heating for better flow field[J]. Iron and Steel, 2020, 55(11): 57-64. doi: 10.13228/j.boyuan.issn0449-749x.20200061 [11] Zhang Shuo, Tang Haiyan, Liu Jinwen, et al. Structural optimization of a six-strand H-type channel induction heating tundish[J]. Journal of Iron and Steel Research, 2019,31(9):787−794. (张硕, 唐海燕, 刘锦文, 等. 六流H型双通道感应加热中间包的结构优化[J]. 钢铁研究学报, 2019,31(9):787−794.Zhang Shuo, Tang Haiyan, Liu Jinwen , et al. Structural optimization of a six-strand H-type channel induction heating tundish[J]. Journal of Iron and Steel Research, 2019, 31(9): 787-794. [12] Wu Guanghui, Tang Haiyan, Xiao Hong, et al. Physical simulation on a 7-strand continuous casting tundish with channel type induction heating[J]. Iron and Steel, 2017,52(11):20−26. (吴光辉, 唐海燕, 肖红, 等. 通道式感应加热7流中间包流场的物理模拟[J]. 钢铁, 2017,52(11):20−26. doi: 10.13228/j.boyuan.issn0449-749x.20170153Wu Guanghui, Tang Haiyan, Xiao Hong, et al. Physical simulation on a 7-strand continuous casting tundish with channel type induction heating[J]. Iron and Steel, 2017, 52(11): 20-26. doi: 10.13228/j.boyuan.issn0449-749x.20170153 [13] Yuan Jibai, Ma Zhimin, Yin Pan, et al. Design of flow control device on 4-strand H-type double channels tundish with induction heating[J]. Continuous Casting, 2022,40(6):85−90. (袁己百, 马志民, 殷攀, 等. 四流H型感应加热中间包控流装置设计[J]. 连铸, 2022,40(6):85−90.Yuan Jibai, Ma Zhimin, Yin Pan, et al. Design of flow control device on 4-strand H-type double channels tundish with induction heating[J]. Continuous Casting, 2022, 40(6): 85-90. [14] Zhang Xiaomeng, Li Shaoxiang, Tang Haiyan, et al. Metallurgical effects of an asymmetric tundish during steady casting and ladle change period[J]. Journal of Iron and Steel Research, 2019,31(1):15−23. (张晓萌, 李少翔, 唐海燕, 等. 非对称中间包稳态浇铸与换包操作的冶金效果[J]. 钢铁研究学报, 2019,31(1):15−23. doi: 10.13228/j.boyuan.issn1001-0963.20180160Zhang Xiaomeng, Li Shaoxiang, Tang Haiyan, et al. Metallurgical effects of an asymmetric tundish during steady casting and ladle change period[J]. Journal of Iron and Steel Research, 2019, 31(1): 15-23. doi: 10.13228/j.boyuan.issn1001-0963.20180160 [15] 安航航, 韩传基, 季 维, 等. 八流中间包内钢液流动和传热特性的研究[J]. 炼钢, 2012, 28(3): 61-65.An Hanghang, Han Chuanji, Ji Wei, et al. Study on flowability and heat transfer characteristics of eight-strand tundish[J]. Steelmaking, 2012, 28(3): 61-65. [16] Gao Tian, Wang Cong, Sun Mingfei, et al. Numerical simulation of structural optimization and inclusion removal in single strand tundish[J]. Steelmaking, 2022,38(2):43−48. (高天, 王聪, 孙明飞, 等. 单流中间包结构优化及夹杂物去除数值模拟研究[J]. 炼钢, 2022,38(2):43−48. doi: 10.3969/j.issn.1002-1043.2022.2.lg202202008Gao Tian, Wang Cong, Sun Mingfei, et al. Numerical simulation of structural optimization and inclusion removal in single strand tundish[J]. Steelmaking, 2022, 38(2): 43-48. doi: 10.3969/j.issn.1002-1043.2022.2.lg202202008 [17] Tang Haiyan, Li Xiaosong, Zhang Shuo, et al. Fluid flow and heat transfer in a tundish with channel induction heating for sequence casting with a constant superheat control[J]. Acta Metallurgica Sinica, 2020,56(12):1629−1642. (唐海燕, 李小松, 张硕, 等. 基于恒过热控制的感应加热中间包内钢水的流动与传热[J]. 金属学报, 2020,56(12):1629−1642. doi: 10.11900/0412.1961.2020.00194Tang Haiyan, Li Xiaosong, Zhang Shuo, et al. Fluid flow and heat transfer in a tundish with channel induction heating for sequence casting with a constant superheat control[J]. Acta Metallurgica Sinica, 2020, 56(12): 1629-1642. doi: 10.11900/0412.1961.2020.00194 [18] Xing Fei, Zheng Shuguo, Zhu Miaoyong. Numerical simulation of effect of channel tilt angle on induction heating tundish[J]. Steelmaking, 2019,35(3):27−33. (邢飞, 郑淑国, 朱苗勇. 通道倾角对感应加热中间包影响的数值模拟[J]. 炼钢, 2019,35(3):27−33.Xing Fei, Zheng Shuguo, Zhu Miaoyong. Numerical simulation of effect of channel tilt angle on induction heating tundish[J]. Steelmaking, 2019, 35(3): 27-33. [19] Luo Ronghua, Ni Hongwei, Zhang Hua, et al. Numerical and physical simulation on optimization of flow control devices in tundish for five-strand bloom casting[J]. Special Steel, 2012,33(4):13−17. (罗荣华, 倪红卫, 张华, 等. 五流大方坯中间包控流装置优化的数值和物理模拟[J]. 特殊钢, 2012,33(4):13−17. doi: 10.3969/j.issn.1003-8620.2012.04.004Luo Ronghua, Ni Hongwei, Zhang Hua, et al. Numerical and physical simulation on optimization of flow control devices in tundish for five-strand bloom casting[J]. Special Steel, 2012, 33(4): 13-17. doi: 10.3969/j.issn.1003-8620.2012.04.004 [20] Ma Zhimin, Wang Jiahui, Fang Qing, et al. Physical simulation on optimization of baffles in an induction heating tundish[J]. Continuous Casting, 2022,41(4):78−86. (马志民, 王家辉, 方庆, 等. 通道式感应加热中间包挡墙优化的物理模拟[J]. 连铸, 2022,41(4):78−86.Ma Zhimin, Wang Jiahui, Fang Qing, et al. Physical simulation on optimization of baffles in an induction heating tundish[J]. Continuous Casting, 2022, 41(4): 78-86. [21] Deng Wei, Niu Shuai, Yang Enjiao, et al. Study on an identical metallurgical effect for multi strand tundish during special steel bloom casting[J]. Journal of Iron and Steel Research, 2021,33(11):1144−1153. (邓伟, 牛帅, 杨恩蛟, 等. 特殊钢大方坯连铸中间包各流冶金效果一致性研究[J]. 钢铁研究学报, 2021,33(11):1144−1153. doi: 10.13228/j.boyuan.issn1001-0963.20210241Deng Wei, Niu Shuai, Yang Enjiao, et al. Study on an identical metallurgical effect for multi strand tundish during special steel bloom casting[J]. Journal of Iron and Steel Research, 2021, 33(11): 1144-1153. doi: 10.13228/j.boyuan.issn1001-0963.20210241 [22] Wang Ning, Li Baokuan, Qi Fengsheng, et al. Flow field and temperature rising characteristics of butterfly induction heating tundish[J]. Journal of Northeastern University(Natural Science), 2021,42(12):1724−1730. (王宁, 李宝宽, 齐凤升, 等. 蝶式感应加热中间包流场与升温特性[J]. 东北大学学报(自然科学版), 2021,42(12):1724−1730. doi: 10.12068/j.issn.1005-3026.2021.12.008Wang Ning, Li Baokuan, Qi Fengsheng, et al. Flow field and temperature rising characteristics of butterfly induction heating tundish[J]. Journal of Northeastern University(Natural Science), 2021, 42(12): 1724-1730. doi: 10.12068/j.issn.1005-3026.2021.12.008 -