留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双通道感应加热中间包控流装置模拟优化

高文星 袁己百 赫俊峰 梁日成 李源源

高文星, 袁己百, 赫俊峰, 梁日成, 李源源. 双通道感应加热中间包控流装置模拟优化[J]. 钢铁钒钛, 2023, 44(3): 144-151. doi: 10.7513/j.issn.1004-7638.2023.03.022
引用本文: 高文星, 袁己百, 赫俊峰, 梁日成, 李源源. 双通道感应加热中间包控流装置模拟优化[J]. 钢铁钒钛, 2023, 44(3): 144-151. doi: 10.7513/j.issn.1004-7638.2023.03.022
Gao Wenxing, Yuan Jibai, He Junfeng, Liang Richeng, Li Yuanyuan. Optimization of flow control device on twin channel induction heating tundish by simulation[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 144-151. doi: 10.7513/j.issn.1004-7638.2023.03.022
Citation: Gao Wenxing, Yuan Jibai, He Junfeng, Liang Richeng, Li Yuanyuan. Optimization of flow control device on twin channel induction heating tundish by simulation[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 144-151. doi: 10.7513/j.issn.1004-7638.2023.03.022

双通道感应加热中间包控流装置模拟优化

doi: 10.7513/j.issn.1004-7638.2023.03.022
基金项目: 国家自然科学基金资助项目(52004191)。
详细信息
    作者简介:

    高文星,1983年出生,男,福建邵武人,硕士,高级工程师,主要工作方向:连铸工程设计与铸坯质量控制,E-mail:82874@wisdri.com

  • 中图分类号: TF777.1

Optimization of flow control device on twin channel induction heating tundish by simulation

  • 摘要: 为解决双通道感应加热中间包原型死区体积比大,平均停留时间短,各铸流差异性大的问题,设计了不同导流孔方案的挡墙和加热通道,并通过数值模拟中间包的流场和温度场。结果表明,在中间包内设挡墙可以很好地改善钢液流动状况。A2方案(八字型挡墙上开两个导流孔,孔径130 mm,与挡墙水平倾角5°,下孔仰角25°,上孔仰角15°)平均停留时间延长了207.2 s,死区体积降低了23.89个百分点,边部水口与中间水口的最大温差为3 ℃。椭圆跑道型加热通道(E2方案)对中间包加热效果更好。通过生产实践证明边部水口与中间水口的最大温差约为3~4 ℃,优化的控流装置改善了中间包的流动性和差异性。
  • 图  1  感应加热中间包内衬结构

    Figure  1.  Refractory of tundish with induction heating configuration

    图  2  通道式感应加热模拟方案(原型)示意(单位:mm)

    Figure  2.  Schematic diagram of twin channel type induction heating simulation scheme

    图  3  原型包与采用A1方案的中间包三维流线

    Figure  3.  3D streamline diagram of tundish without wall and with A1 scheme

    图  4  不同类型挡墙的中间包流体RTD曲线

    Figure  4.  RTD curves of flow liquid in tundish with different type walls

    图  5  原型包与A2方案整体温度等值分布

    Figure  5.  Temperature equivalent distribution of tundish without wall and scheme A2

    图  6  不同加热通道方案中间包整体温度等值分布

    Figure  6.  Equivalent distribution diagram of overall temperature in tundish under different heating twin channel schemes

    图  7  方案A2数模与水模的 RTD 曲线比较

    Figure  7.  Comparison of RTD curves between numerical and water simulation in scheme A2

    图  8  方案A2中间包的水模与数模的流体流动状态对比

    Figure  8.  Comparison of fluid flow state between numerical and water simulation in scheme A2

    表  1  感应加热中间包工艺参数与钢液物性参数

    Table  1.   Process parameters of tundish with induction heating and physical parameters of molten steel

    中间包
    容量/t
    钢包长水口
    直径/mm
    感应加热通道
    长度/mm
    生产铸坯断
    面/(mm×mm)
    设计拉速/
    (m·min−1)
    密度/
    (kg·m−3)
    粘度/
    (Pa·s)
    热容量/
    [J·(kg·K)−1]
    传热系数/
    [W·(m·K)−1]
    5475~1560390×4800.43~0.4970000.006575041
    下载: 导出CSV

    表  2  挡墙导流孔结构方案

    Table  2.   Structural scheme of different wall diversion holes and heating twin channels

    方案设计差异
    原型无挡墙
    A1八字形挡墙,导流孔与挡墙水平倾角5°,下孔仰角25°,
    上孔仰角20°
    A2八字形挡墙,导流孔与挡墙水平倾角5°,下孔仰角25°,
    上孔仰角15°
    B1八字形挡墙,导流孔与挡墙垂直,下孔仰角25°,
    上孔仰角20°
    B2八字形挡墙,导流孔与挡墙垂直,下孔仰角25°,
    上孔仰角15°
    下载: 导出CSV

    表  3  不同类型挡墙的RTD曲线的分析结果

    Table  3.   Analysis results of RTD curves under different type walls

    方案出水口响应时间/s峰值时间/s每流平均停留
    时间/s
    中间包总体平均
    停留时间/s
    活塞区体积比/%死区体积比/%全混流体积比/%各流示踪剂浓度
    总体平均标准差
    原型1流2225981354.91041.437.2334.6428.120.0097
    2流82.5365995.8
    3流82.5360989.3
    4流2196121364.3
    A11流227925.51170.91214.13713.2144.390.0047
    2流20710391280.8
    3流2081067.51249.5
    4流2208521161
    A21流2329031215.81248.638.1410.7551.110.0048
    2流221.511021317.3
    3流255.51074.51315.2
    4流211.5812.51148.3
    B11流244.5928.511811216.634.6213.0452.340.0037
    2流210.51054.51261.5
    3流219.510191246.4
    4流222.58851179.3
    B21流225.5911.51172.51212.933.4313.353.270.0039
    2流22611041266.6
    3流23410671244.1
    4流2268781169.6
    下载: 导出CSV

    表  4  中间包内边流与中间流的钢水温度

    Table  4.   Temperature difference between different strands in tundish

    大包重量/t中间包重量/t边流温度/℃中间流温度/℃温差/℃
    11552152315194
    9151152415204
    4254151915163
    下载: 导出CSV
  • [1] Wang Qiang, He Ming, Zhu Xiaowei, et al. Study and development on numerical simulation for application of electromagnetic field technology in metallurgical processes[J]. Acta Metallurgica Sinica, 2018,54(2):228−246. (王强, 何明, 朱晓伟, 等. 电磁场技术在冶金领域应用的数值模拟研究进展[J]. 金属学报, 2018,54(2):228−246. doi: 10.11900/0412.1961.2017.00360

    Wang Qiang, He Ming, Zhu Xiaowei, et al. Study and development on numerical simulation for application of electromagnetic field technology in metallurgical processes[J]. Acta Metallurgica Sinica, 2018, 54(2): 228-246. doi: 10.11900/0412.1961.2017.00360
    [2] Pan Dong, Guo Qingtao, Yu Fuzhi, et al. Research and application progress of electromagnetic induction heating technology in tundish[J]. Continuous Casting, 2022,41(4):2−7. (潘栋, 郭庆涛, 于赋志, 等. 中间包电磁感应加热技术研究及应用进展[J]. 连铸, 2022,41(4):2−7.

    Pan Dong, Guo Qingtao, Yu Fuzhi , et al. Research and application progress of electromagnetic induction heating technology in tundish[J]. Continuous Casting, 2022, 41(4): 2-7.
    [3] Tang Haiyan, Liu Jinwen, Wang Kaimin, et al. Progress and perspective of functioned continuous castingtundish through heating and temperature control[J]. Acta Metallurgica Sinica, 2021,57(10):1229−1245. (唐海燕, 刘锦文, 王凯民, 等. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021,57(10):1229−1245. doi: 10.11900/0412.1961.2021.00046

    Tang Haiyan, Liu Jinwen, Wang Kaimin, et al. Progress and perspective of functioned continuous castingtundish through heating and temperature control[J]. Acta Metallurgica Sinica, 2021, 57(10): 1229-1245. doi: 10.11900/0412.1961.2021.00046
    [4] Chen Xiqing, Xiao Hong, Wang Pu, et al. Three-dimensional magneto-hydrothermal coupling model of twin-channel tundish with induction heating[J]. Iron and Steel, 2021,56(6):48−58. (陈希青, 肖红, 王璞, 等. 双通道感应加热中间包的三维磁流热耦合模型[J]. 钢铁, 2021,56(6):48−58. doi: 10.13228/j.boyuan.issn0449-749x.20200502

    Chen Xiqing, Xiao Hong, Wang Pu, et al. Three-dimensional magneto-hydrothermal coupling model of twin-channel tundish with induction heating[J]. Iron and Steel, 2021, 56(6): 48-58. doi: 10.13228/j.boyuan.issn0449-749x.20200502
    [5] Yu Hui, Shi Zhipeng, Wang Hongguo, et al. Research on metallurgical effect of double-channel electromagnetic induction heating tundish[J]. Steelmaking, 2022,38(3):37−42. (余慧, 史志鹏, 王红国, 等. 双通道式电磁感应加热中间包冶金效果研究[J]. 炼钢, 2022,38(3):37−42. doi: 10.3969/j.issn.1002-1043.2022.3.lg202203008

    Yu Hui, Shi Zhipeng, Wang Hongguo, et al. Research on metallurgical effect of double-channel electromagnetic induction heating tundish[J]. Steelmaking, 2022, 38(3): 37-42. doi: 10.3969/j.issn.1002-1043.2022.3.lg202203008
    [6] 陈远清, 仇圣桃. T形中间包新型控流装置的模拟及试验[J]. 钢铁, 2018, 53(7): 45-49.

    Chen Yuanqing, Qiu Shengtao. Modeling and industrial test on new type of flow control device for T-shape tundish[J]. Iron and Steel, 2018, 53(7): 45-49.
    [7] Li Xiaosong, Tang Haiyan, Hu Qun, et al. Physical simulation on fluid flow consistence in tundish with asymmetric flow control device[J]. China Metallurgy, 2020,30(10):28−35. (李小松, 唐海燕, 胡群, 等. 非对称控流结构中间包流场一致性的物理模拟[J]. 中国冶金, 2020,30(10):28−35. doi: 10.13228/j.boyuan.issn1006-9356.20200096

    Li Xiaosong, Tang Haiyan, Hu Qun, et al. Physical simulation on fluid flow consistence in tundish with asymmetric flow control device[J]. China Metallurgy, 2020, 30(10): 28-35. doi: 10.13228/j.boyuan.issn1006-9356.20200096
    [8] Wang Kaimin, Tang Haiyan, Xiao Hong, et al. Control on flow of molten steel in a 6-strand tundish with dual channel induction heating[J]. China Metallurgy, 2022,32(2):84−91. (王凯民, 唐海燕, 肖红, 等. 六流双通道感应加热中间包钢水流动控制[J]. 中国冶金, 2022,32(2):84−91. doi: 10.13228/j.boyuan.issn1006-9356.20210430

    Wang Kaimin, Tang Haiyan, Xiao Hong, et al. Control on flow of molten steel in a 6-strand tundish with dual channel induction heating[J]. China Metallurgy, 2022, 32(2): 84-91. doi: 10.13228/j.boyuan.issn1006-9356.20210430
    [9] Yang Shufeng, Wu Jinqiang, Li Jingshe, et al. Physical simulation on optimization of flow control devices in four strand tundish[J]. China Metallurgy, 2019,29(4):81−87. (杨树峰, 吴金强, 李京社, 等. 四流中间包控流装置优化物理模拟[J]. 中国冶金, 2019,29(4):81−87. doi: 10.13228/j.boyuan.issn1006-9356.20190086

    Yang Shufeng, Wu Jinqiang, Li Jingshe, et al.Physical simulation on optimization of flow control devices in four strand tundish[J]. China Metallurgy, 2019, 29(4): 81-87. doi: 10.13228/j.boyuan.issn1006-9356.20190086
    [10] Ma Yu, Tang Haiyan, Zhang Shuo, et al. Water modelling on a five-strand tundish with channel induction heating for better flow field[J]. Iron and Steel, 2020,55(11):57−64. (马钰, 唐海燕, 张硕, 等. 通道式感应加热五流中间包流场的水力学模拟[J]. 钢铁, 2020,55(11):57−64. doi: 10.13228/j.boyuan.issn0449-749x.20200061

    Ma Yu, Tang Haiyan, Zhang Shuo, et al. Water modelling on a five-strand tundish with channel induction heating for better flow field[J]. Iron and Steel, 2020, 55(11): 57-64. doi: 10.13228/j.boyuan.issn0449-749x.20200061
    [11] Zhang Shuo, Tang Haiyan, Liu Jinwen, et al. Structural optimization of a six-strand H-type channel induction heating tundish[J]. Journal of Iron and Steel Research, 2019,31(9):787−794. (张硕, 唐海燕, 刘锦文, 等. 六流H型双通道感应加热中间包的结构优化[J]. 钢铁研究学报, 2019,31(9):787−794.

    Zhang Shuo, Tang Haiyan, Liu Jinwen , et al. Structural optimization of a six-strand H-type channel induction heating tundish[J]. Journal of Iron and Steel Research, 2019, 31(9): 787-794.
    [12] Wu Guanghui, Tang Haiyan, Xiao Hong, et al. Physical simulation on a 7-strand continuous casting tundish with channel type induction heating[J]. Iron and Steel, 2017,52(11):20−26. (吴光辉, 唐海燕, 肖红, 等. 通道式感应加热7流中间包流场的物理模拟[J]. 钢铁, 2017,52(11):20−26. doi: 10.13228/j.boyuan.issn0449-749x.20170153

    Wu Guanghui, Tang Haiyan, Xiao Hong, et al. Physical simulation on a 7-strand continuous casting tundish with channel type induction heating[J]. Iron and Steel, 2017, 52(11): 20-26. doi: 10.13228/j.boyuan.issn0449-749x.20170153
    [13] Yuan Jibai, Ma Zhimin, Yin Pan, et al. Design of flow control device on 4-strand H-type double channels tundish with induction heating[J]. Continuous Casting, 2022,40(6):85−90. (袁己百, 马志民, 殷攀, 等. 四流H型感应加热中间包控流装置设计[J]. 连铸, 2022,40(6):85−90.

    Yuan Jibai, Ma Zhimin, Yin Pan, et al. Design of flow control device on 4-strand H-type double channels tundish with induction heating[J]. Continuous Casting, 2022, 40(6): 85-90.
    [14] Zhang Xiaomeng, Li Shaoxiang, Tang Haiyan, et al. Metallurgical effects of an asymmetric tundish during steady casting and ladle change period[J]. Journal of Iron and Steel Research, 2019,31(1):15−23. (张晓萌, 李少翔, 唐海燕, 等. 非对称中间包稳态浇铸与换包操作的冶金效果[J]. 钢铁研究学报, 2019,31(1):15−23. doi: 10.13228/j.boyuan.issn1001-0963.20180160

    Zhang Xiaomeng, Li Shaoxiang, Tang Haiyan, et al. Metallurgical effects of an asymmetric tundish during steady casting and ladle change period[J]. Journal of Iron and Steel Research, 2019, 31(1): 15-23. doi: 10.13228/j.boyuan.issn1001-0963.20180160
    [15] 安航航, 韩传基, 季 维, 等. 八流中间包内钢液流动和传热特性的研究[J]. 炼钢, 2012, 28(3): 61-65.

    An Hanghang, Han Chuanji, Ji Wei, et al. Study on flowability and heat transfer characteristics of eight-strand tundish[J]. Steelmaking, 2012, 28(3): 61-65.
    [16] Gao Tian, Wang Cong, Sun Mingfei, et al. Numerical simulation of structural optimization and inclusion removal in single strand tundish[J]. Steelmaking, 2022,38(2):43−48. (高天, 王聪, 孙明飞, 等. 单流中间包结构优化及夹杂物去除数值模拟研究[J]. 炼钢, 2022,38(2):43−48. doi: 10.3969/j.issn.1002-1043.2022.2.lg202202008

    Gao Tian, Wang Cong, Sun Mingfei, et al. Numerical simulation of structural optimization and inclusion removal in single strand tundish[J]. Steelmaking, 2022, 38(2): 43-48. doi: 10.3969/j.issn.1002-1043.2022.2.lg202202008
    [17] Tang Haiyan, Li Xiaosong, Zhang Shuo, et al. Fluid flow and heat transfer in a tundish with channel induction heating for sequence casting with a constant superheat control[J]. Acta Metallurgica Sinica, 2020,56(12):1629−1642. (唐海燕, 李小松, 张硕, 等. 基于恒过热控制的感应加热中间包内钢水的流动与传热[J]. 金属学报, 2020,56(12):1629−1642. doi: 10.11900/0412.1961.2020.00194

    Tang Haiyan, Li Xiaosong, Zhang Shuo, et al. Fluid flow and heat transfer in a tundish with channel induction heating for sequence casting with a constant superheat control[J]. Acta Metallurgica Sinica, 2020, 56(12): 1629-1642. doi: 10.11900/0412.1961.2020.00194
    [18] Xing Fei, Zheng Shuguo, Zhu Miaoyong. Numerical simulation of effect of channel tilt angle on induction heating tundish[J]. Steelmaking, 2019,35(3):27−33. (邢飞, 郑淑国, 朱苗勇. 通道倾角对感应加热中间包影响的数值模拟[J]. 炼钢, 2019,35(3):27−33.

    Xing Fei, Zheng Shuguo, Zhu Miaoyong. Numerical simulation of effect of channel tilt angle on induction heating tundish[J]. Steelmaking, 2019, 35(3): 27-33.
    [19] Luo Ronghua, Ni Hongwei, Zhang Hua, et al. Numerical and physical simulation on optimization of flow control devices in tundish for five-strand bloom casting[J]. Special Steel, 2012,33(4):13−17. (罗荣华, 倪红卫, 张华, 等. 五流大方坯中间包控流装置优化的数值和物理模拟[J]. 特殊钢, 2012,33(4):13−17. doi: 10.3969/j.issn.1003-8620.2012.04.004

    Luo Ronghua, Ni Hongwei, Zhang Hua, et al. Numerical and physical simulation on optimization of flow control devices in tundish for five-strand bloom casting[J]. Special Steel, 2012, 33(4): 13-17. doi: 10.3969/j.issn.1003-8620.2012.04.004
    [20] Ma Zhimin, Wang Jiahui, Fang Qing, et al. Physical simulation on optimization of baffles in an induction heating tundish[J]. Continuous Casting, 2022,41(4):78−86. (马志民, 王家辉, 方庆, 等. 通道式感应加热中间包挡墙优化的物理模拟[J]. 连铸, 2022,41(4):78−86.

    Ma Zhimin, Wang Jiahui, Fang Qing, et al. Physical simulation on optimization of baffles in an induction heating tundish[J]. Continuous Casting, 2022, 41(4): 78-86.
    [21] Deng Wei, Niu Shuai, Yang Enjiao, et al. Study on an identical metallurgical effect for multi strand tundish during special steel bloom casting[J]. Journal of Iron and Steel Research, 2021,33(11):1144−1153. (邓伟, 牛帅, 杨恩蛟, 等. 特殊钢大方坯连铸中间包各流冶金效果一致性研究[J]. 钢铁研究学报, 2021,33(11):1144−1153. doi: 10.13228/j.boyuan.issn1001-0963.20210241

    Deng Wei, Niu Shuai, Yang Enjiao, et al. Study on an identical metallurgical effect for multi strand tundish during special steel bloom casting[J]. Journal of Iron and Steel Research, 2021, 33(11): 1144-1153. doi: 10.13228/j.boyuan.issn1001-0963.20210241
    [22] Wang Ning, Li Baokuan, Qi Fengsheng, et al. Flow field and temperature rising characteristics of butterfly induction heating tundish[J]. Journal of Northeastern University(Natural Science), 2021,42(12):1724−1730. (王宁, 李宝宽, 齐凤升, 等. 蝶式感应加热中间包流场与升温特性[J]. 东北大学学报(自然科学版), 2021,42(12):1724−1730. doi: 10.12068/j.issn.1005-3026.2021.12.008

    Wang Ning, Li Baokuan, Qi Fengsheng, et al. Flow field and temperature rising characteristics of butterfly induction heating tundish[J]. Journal of Northeastern University(Natural Science), 2021, 42(12): 1724-1730. doi: 10.12068/j.issn.1005-3026.2021.12.008
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  11
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-24
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回