中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GH4169真空感应过程夹杂物的演变机制

李靖 蒋世川 戚慧琳 周扬

李靖, 蒋世川, 戚慧琳, 周扬. GH4169真空感应过程夹杂物的演变机制[J]. 钢铁钒钛, 2023, 44(3): 159-164. doi: 10.7513/j.issn.1004-7638.2023.03.024
引用本文: 李靖, 蒋世川, 戚慧琳, 周扬. GH4169真空感应过程夹杂物的演变机制[J]. 钢铁钒钛, 2023, 44(3): 159-164. doi: 10.7513/j.issn.1004-7638.2023.03.024
Li Jing, Jiang Shichuan, Qi Huilin, Zhou Yang. Evolution mechanism of inclusions in GH4169 produced by vacuum induction melting[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 159-164. doi: 10.7513/j.issn.1004-7638.2023.03.024
Citation: Li Jing, Jiang Shichuan, Qi Huilin, Zhou Yang. Evolution mechanism of inclusions in GH4169 produced by vacuum induction melting[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 159-164. doi: 10.7513/j.issn.1004-7638.2023.03.024

GH4169真空感应过程夹杂物的演变机制

doi: 10.7513/j.issn.1004-7638.2023.03.024
详细信息
    作者简介:

    李靖,1994年出生,男,四川成都人,硕士, 主要从事高温合金材料有关特种冶炼的研究工作,E-mail:lj19801239530@163.com

  • 中图分类号: TG132.3,TF76

Evolution mechanism of inclusions in GH4169 produced by vacuum induction melting

  • 摘要: 高温合金中夹杂物是影响合金冶金质量和使用性能的主要因素,因此研究了GH4169镍基高温合金真空感应(VIM)熔炼制备过程中夹杂物的演变机制。采用真空感应炉对GH4169合金进行冶炼,通过ASPEX型自动扫描电镜分析检测夹杂物的物相组成、尺寸形貌及成分,并分析夹杂物的形成机理、来源及演变机制。结果表明,真空熔炼GH4169合金主要生成五种类型夹杂物:Al2O3、MgAl2O4和MgO单层夹杂物,MgAl2O4-Ti(C,N)-NbC和MgO-Ti(C,N)-NbC多层复合夹杂物。Al2O3在熔化期形成,MgAl2O4在精炼期形成,加入Nb、Al、Ti合金化后形成MgAl2O4-Ti(C,N)-NbC夹杂,加入Mg合金化后生成MgO和MgO-Ti(C,N)-NbC夹杂。随冶炼过程的进行,夹杂物的数量密度先增加后减少,在精炼期夹杂物数量密度达到峰值211.42个/mm2,精炼期结束后,夹杂物数量减少,出钢前夹杂物数量密度46.57个/mm2
  • 图  1  真空感应熔炼过程样取样区域

    Figure  1.  Location of sampling during vacuum induction melting process

    图  2  全自动钢中非金属夹杂物检测分析步骤

    Figure  2.  Steps of automated analysis of non-metallic inclusions in steel

    图  3  Al2O3夹杂物形貌及能谱

    Figure  3.  Morphology and energy spectrum diagram of Al2O3

    图  4  MgAl2O4夹杂物形貌及能谱

    Figure  4.  Morphology of MgAl2O4

    图  5  Ti(C,N)-Nb和MgAl2O4-Ti(C,N)-NbC夹杂物形貌

    Figure  5.  Morphology of (a) Ti(C,N)-Nb and (b) MgAl2O4-Ti(C,N)-NbC

    图  6  MgO和MgO-Ti(C,N)-NbC夹杂物形貌

    Figure  6.  Morphology of (a) MgO and (b) MgO-Ti(C,N)-NbC

    图  7  单位面积内不同类型夹杂物的数量

    Figure  7.  Number of different types of inclusions per unit area

    图  8  单位面积内夹杂物的面积总和

    Figure  8.  The total area of inclusions per unit area

    表  1  GH4169高温合金的化学成分

    Table  1.   Chemical composition of GH4169 superalloy %

    NiCrMoNbAlTiMgCFe
    50.0~55.017.0~20.02.8~3.25.0~5.50.5~0.70.8~1.5≤0.05≤0.08余量
    下载: 导出CSV
  • [1] Ivanoff T A, Watt T J, Taleff E M. Characterization of solidification microstructures in vacuum arc remelted nickel alloy 718[J]. Metallurgical and Materials Transactions B, 2019,50(2):700−715. doi: 10.1007/s11663-019-01530-2
    [2] Rao G A, Prasad K S, Srinias M, et al. Characterisation of hot isostatically pressed nickel base superalloy Inconel 718[J]. Materials Science and Technology, 2003,19(3):313−321. doi: 10.1179/026708303225010605
    [3] Whitmore L, Ahmadi M R, Guetaz L, et al. The microstructure of heat-treated nickel-based superalloy 718 plus[J]. Materials Science and Engineering A, 2014,610(29):39−45.
    [4] 高小勇. FGH96粉末高温合金母合金的纯净化技术研究[D]. 北京: 北京科技大学, 2020.

    Gao Xiaoyong. Research on purification technology for the master ally of FGH96 powder superalloy[D]. Beijing: University of Science and Technology Beijing, 2020.
    [5] Wang Chong, Zeng Yanping, Xie Xishan. Influence of characteristic inclusion parameters on crack initiation and propagation ultra-high strength steels for aerospace application under tensile and low cyclic fatigue loading[J]. Journal of University of Science and Technology Beijing, 2009,31(5):557−562. (王冲, 曾燕屏, 谢锡善. 拉伸与低周疲劳载荷作用下夹杂物特征参数对航空用超高强度钢中裂纹萌生与扩展的影响[J]. 北京科技大学学报, 2009,31(5):557−562.

    Wang Chong, Zeng Yanping, Xie Xishan. Influence of characteristic inclusion parameters on crack initiation and propagation ultra-high strength steels for aerospace application under tensile and low cyclic fatigue loading[J]. Journal of University of Science and Technology Beijing, 2009, 31(5): 557-562.
    [6] Wang Di, Yang Shufeng, Qu Jinglong, et al. Distribution of inclusions on surface of GH4169 ESR ingot[J]. Iron and Steel, 2021,56(2):155−161. (王迪, 杨树峰, 曲敬龙, 等. GH4169电渣重熔铸锭表层夹杂物分布规律[J]. 钢铁, 2021,56(2):155−161.

    Wang Di, Yang Shufeng, Qu Jinglong, et al. Distribution of inclusions on surface of GH4169 ESR ingot[J]. Iron and Steel, 2021, 56(02): 155-161.
    [7] Kong Haohao, Yang Shufeng, Qu Jinglong, et al. Type and distribution of inclusion GH4169 nickel based superalloy[J]. Acta Astronautica Sinica, 2020,41(4):304−311. (孔豪豪, 杨树峰, 曲敬龙, 等. GH4169铸锭中夹杂物的类型及分布规律[J]. 航空学报, 2020,41(4):304−311.

    Kong Haohao, Yang Shufeng, Qu Jinglong, et al. Type and distribution of inclusion GH4169 nickel based superalloy[J]. Acta Astronautica Sinica, 2020, 41(4): 304-311.
    [8] 石安君. 超重力对IN718合金熔液凝固及夹杂物机制影响的基础研究[D]. 北京: 北京科技大学, 2021.

    Shi Anjun. Effect of supergravity on solidification and inclusion behavior of IN718 superalloy[D]. Beijing: University of Science and Technology Beijing, 2021.
    [9] Shi Chengbin, Chen Xichun, Guo Hanjie, et al. Control of MgO center dot Al2O3 spinel inclusions during protective gas electroslag remelting of die steel[J]. Metallurgical and Materials Transactions B, 2013,44(2):378−389. doi: 10.1007/s11663-012-9780-x
    [10] Mu Haoyuan, Zhang Tongsheng, Fruehan Richard, et al. Reduction of CaO and MgO slag components by Al in liquid Fe[J]. Metallurgical and Materials Transactions B, 2018,49B(4):1665−1674.
    [11] Gui Mingxi, Xu Qingbin. Mechanism of MgO thermit reduction reaction[J]. Foreign Refractories, 2006,31(5):45−50. (桂明玺, 徐庆斌. MgO的Al热还原反应的机理[J]. 国外耐火材料, 2006,31(5):45−50.

    Gui Mingxi, Xu Qingbin. Mechanism of MgO thermit reduction reaction[J]. Foreign Refractories, 2006, 31(5): 45-50.
    [12] Tora A, Zhou Fei, Wu Ming H, et al. Characterization of non-metallic inclusions in superelastic NiTi tubes[J]. Journal of Materials Engineering and Performance, 2009,18(5/6):448−458.
    [13] Wei Wenqing, Liu Bingqiang, Jiang Junsheng, et al. Effect of heat treatment on microstructure and mechanical behavior of Nb-35Ti-4C alloy[J]. Rare Metal Materials and Engineering, 2017,46(3):777−782. (魏文庆, 刘炳强, 姜军生, 等. 热处理对Nb-35Ti-4C合金微观组织和力学机制的影响[J]. 稀有金属材料与工程, 2017,46(3):777−782.

    Wei W Q, Liu B Q, Jiang J S, et al. Effect of heat treatment on microstructure and mechanical behavior of Nb-35 Ti-4 C alloy[J]. Rare Metal Materials and Engineering, 2017, 46(3): 777-782.
    [14] Yuan Chao, Guo Jianting, Li Gusong, et al. Effect mechanism and control of nitrogen in cast superalloys[J]. The Chinese Journal of Nonferrous Metals, 2011,21(4):14. (袁超, 郭建亭, 李谷松, 等. 铸造高温合金中氮的影响机理与控制[J]. 中国有色金属学报, 2011,21(4):14.

    Yuan Chao, Guo Jianting, Li Gusong, et al. Effect mechanism and control of nitrogen in cast superalloys[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(4): 14.
    [15] Wang Ning, Gao Jinguo, Yang Shulei, et al. Numerical simulation of inclusions movement in vacuum induction melting[J]. China Metallurgy, 2021,31(12):20−26. (王宁, 高锦国, 杨曙磊, 等. 真空感应熔炼中夹杂物运动机制数值模拟[J]. 中国冶金, 2021,31(12):20−26.

    Wang Ning, Gao Jinguo, Yang Shulei, et al. Numerical simulation of inclusions movement in vacuum induction melting[J]. China Metallurgy, 2021, 31(12): 20-26.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  314
  • HTML全文浏览量:  43
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-21
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回