Study of the heating rate effect on the oxidation kinetics of the corrosion-resistant rebar
-
摘要: 通过热重分析方法和显微结构观察,研究了耐腐蚀钢筋不同加热速率下的氧化规律,并与等温氧化过程做了对比。结果表明,不同加热速率下钢筋的显微组织并没有明显差异,但是氧化层厚度随着加热速率的减小而增加。当加热速率小于10 ℃/min时,氧化层呈现明显的双层结构,但当加热速度为20 ℃/min时,氧化层几乎呈现单层结构。通过恒速加热试验建立了一种新的氧化活化能计算方法,与等温氧化试验所得值相比,加热速率为5、10、20 ℃/min时的相对误差分别为4.14%、5.12%和32.13%,因此,为了保证新方法的精度,试验需在较低的加热速率下进行。Abstract: The oxidation behavior of corrosion-resistant rebar at various heating rates in air was studied by thermogravimetric analysis and microstructural observation, and the results were compared with those of isothermal oxidation. It is showed that there were no significant microstructural differences at different heating rates, but the oxidation thickness increased with the decrement of the heating rate. Meanwhile, the oxide scale displayed a two-layer structure when the heating rates were under 10 ℃/min, but there was almost a single layer of the oxide at the heating rate of 20 ℃/min. A new calculation method for the oxidising activation energy was established through the constant heating rate tests. The relative errors of the heat rates of 5, 10 ℃/min, and 20 ℃/min were 4.14%, 5.12%, and 32.13% respectively, compared to the values obtained by the isothermal oxidation tests. Thus, in order to ensure the accuracy of the new method, tests should be carried out at comparatively low heating rates.
-
图 7 不同加热速率下的
$\ln \left( {{m \mathord{\left/ {\vphantom {m S}} \right. } S}} \right) + \ln \left( {\dfrac{{d\left( {{m \mathord{\left/ {\vphantom {m S}} \right. } S}} \right)}}{{dT}}} \right)$ -$\dfrac{1}{T}$ 关系Figure 7. Relationship of
$\ln \left( {{m \mathord{\left/ {\vphantom {m S}} \right. } S}} \right) + \ln \left( {\dfrac{{d\left( {{m \mathord{\left/ {\vphantom {m S}} \right. } S}} \right)}}{{dT}}} \right)$ and$\dfrac{1}{T}$ at different heating rates表 1 钢筋成分控制
Table 1. Chemical composition of the rebar
% C Si Mn P S Cu Cr V 0.17~0.21 0.3~0.6 1.1~1.5 0.06~0.15 <0.03 0.2~0.6 0.2~1 0.02~0.05 表 2 不同阶段的氧化速率常数
Table 2. Oxidation rate constants in different stages
温度/ ℃ k×104/ (kg·m−4·s−1) R2 900 7.590 0.985 950 14.700 0.988 1000 24.500 0.982 表 3 不同氧化试验获得的活化能
Table 3. Activation energy obtained under different testing conditions
氧化方式 加热速率/(℃·min−1) 活化能/(kJ·mol−1) 相对误差/% 等温 145.66 恒速 5 151.68 4.14 恒速 10 138.20 5.12 恒速 20 99.86 32.13 -
[1] Yu Wei, Wang Jun, Liu Tao. Evolution and application of oxidation and surface quality control of hot rolled steel products[J]. Steel Rolling, 2017,34(3):1−6. (余伟, 王俊, 刘涛. 热轧钢材氧化及表面质量控制技术的发展及应用[J]. 轧钢, 2017,34(3):1−6. doi: 10.13228/j.boyuan.issn1003-9996.201700Y4Yu Wei, Wang Jun, Liu Tao. Evolution and application of oxidation and surface quality control of hot rolled steel products [J]. Steel Rolling, 2017, 34(3): 1-6. doi: 10.13228/j.boyuan.issn1003-9996.201700Y4 [2] Du Xin, Luo Xiaoyang, Zhao Xiaolong, et al. Analysis and control of oxidation color of 590 MPa manganese steel strip by BAF[J]. China Metallurgy, 2019,29(8):30−33,70. (杜昕, 罗晓阳, 赵小龙, 等. 590 MPa含锰钢带罩式炉退火氧化色分析与控制[J]. 中国冶金, 2019,29(8):30−33,70.Du Xin, Luo Xiaoyang, Zhao Xiaolong, et al. Analysis and control of oxidation color of 590 MPa manganese steel strip by BAF[J]. China Metallurgy, 2019, 29(8): 30-33, 70. [3] Zhang Di, Guo Yunxia, Yu Shuai, et al. Effect of descaling process on the structure of oxide scale during the finishing rolling of medium and heavy plate[J]. J. of Anhui University of Technology (Natural Science), 2021,38(1):18−23. (张迪, 郭云侠, 于帅, 等. 中厚板精轧过程中除鳞工艺对氧化铁皮结构的影响[J]. 安徽工业大学学报(自然科学版), 2021,38(1):18−23.Zhang Di, Guo Yunxia, Yu Shuai, et al. Effect of descaling process on the structure of oxide scale during the finishing rolling of medium and heavy plate [J]. J. of Anhui University of Technology (Natural Science), 2021, 38(1): 18-23. [4] Bai Yin, Liu Zhengdong, Xie Jianxin, et al. Effect of pre-oxidation treatment on the behavior of high temperature oxidation in steam of G115 steel[J]. Acta Metallurgica Sinica, 2018,54(6):895−904. (白银, 刘正东, 谢建新, 等. 预氧化处理对G115钢高温蒸气氧化行为的影响[J]. 金属学报, 2018,54(6):895−904. doi: 10.11900/0412.1961.2017.00377Bai Yin, Liu Zhengdong, Xie Jianxin, et al. Effect of pre-oxidation treatment on the behavior of high temperature oxidation in steam of G115 steel[J]. Acta Metallurgica Sinica, 2018, 54(6): 895-904. doi: 10.11900/0412.1961.2017.00377 [5] Qi W, Wang J, Li X, et al. Effect of oxide scale on corrosion behavior of HP-13Cr stainless steel during well completion process[J]. Journal of Materials Science & Technology, 2021,64:153−164. [6] Cheng Lei, Sun Bin, Gao Wei, et al. Effect of oxidation time and chromium content on high temperature oxidation behavior of Fe-Cr steel[J]. Heat Treatment of Metals, 2021,46(7):65−71. (程磊, 孙彬, 高炜, 等. 氧化时间及铬含量对Fe-Cr钢高温氧化行为的影响[J]. 金属热处理, 2021,46(7):65−71. doi: 10.13251/j.issn.0254-6051.2021.07.013Cheng Lei, Sun Bin, Gao Wei, et al. Effect of oxidation time and chromium content on high temperature oxidation behavior of Fe-Cr steel[J]. Heat Treatment of Metals, 2021, 46(7): 65-71. doi: 10.13251/j.issn.0254-6051.2021.07.013 [7] Zhao Xiaolong, Wang Yongqi, Tang Xingchang, et al. Review on the oxidation mechanism and its research of steel billet in heating process[J]. Steel Rolling, 2019,36(6):66−68,82. (赵小龙, 王雍期, 唐兴昌, 等. 钢坯在加热过程中的氧化机理及其研究综述[J]. 轧钢, 2019,36(6):66−68,82. doi: 10.13228/j.boyuan.issn1003-9996.20190010Zhao Xiaolong, Wang Yongqi, Tang Xingchang, et al. Review on the oxidation mechanism and its research of steel billet in heating process [J]. Steel Rolling, 2019, 36(6): 66-68, 82. doi: 10.13228/j.boyuan.issn1003-9996.20190010 [8] Yuan Q, Xu G, Liang W, et al. Effects of oxygen concentration on the passivation of Si-containing steel during high-temperature oxidation[J]. Corrosion Reviews, 2018,36(4):385−393. doi: 10.1515/corrrev-2017-0077 [9] Li Zhifeng, He Shuai, Xing Shuqing, et al. Effects of chromium addition on high temperature oxidation behavior of hot rolled low carbon steel[J]. Iron and Steel, 2021,56(9):110−117. (李志峰, 贺帅, 邢淑清, 等. 铬元素添加对热轧低碳钢高温氧化行为的影响[J]. 钢铁, 2021,56(9):110−117. doi: 10.13228/j.boyuan.issn0449-749x.20210072Li Zhifeng, He Shuai, Xing Shuqing, et al. Effects of chromium addition on high temperature oxidation behavior of hot rolled low carbon steel [J]. Iron and Steel, 2021, 56(9): 110-117. doi: 10.13228/j.boyuan.issn0449-749x.20210072 [10] Zhang Yingbo, Zou Dening, Wei Tongyu, et al. Effects of Al on high temperature oxidation behavior of a ferritic heat-resistant stainless steel[J]. Iron and Steel, 2021,56(4):70−75,92. (张英波, 邹德宁, 魏统宇, 等. 铝对铁素体耐热不锈钢高温氧化行为的影响[J]. 钢铁, 2021,56(4):70−75,92. doi: 10.13228/j.boyuan.issn0449-749x.20200345Zhang Yingbo, Zou Deyu, Wei Tongyu, et al. Effects of Al on high temperature oxidation behavior of a ferritic heat-resistant stainless steel[J]. Iron and Steel, 2021, 56(4): 70-75, 92. doi: 10.13228/j.boyuan.issn0449-749x.20200345 [11] Jiao Junhong, Li Xin, Liu Zhenyu. Effect of rare earth Ce on high temperature oxidation behavior of 310S austenitic heat-resistant stainless steel[J]. Heat Treatment of Metals, 2022,47(1):120−124. (焦军红, 李鑫, 刘振宇. 稀土Ce对310S奥氏体耐热不锈钢高温氧化行为的影响[J]. 金属热处理, 2022,47(1):120−124.Jiao Junhong, Li Xin, Liu Zhenyu. Effect of rare earth Ce on high temperature oxidation behavior of 310 S austenitic heat-resistant stainless steel[J]. Heat Treatment of Metals, 2022, 47(1): 120-124. [12] Bai Yin, Chen Zhengzong, Liu Zhengdong, et al. Effect of steam temperature on oxidation behavior of G115 steel[J]. Journal of Iron and Steel Research, 2020,32(1):52−59. (白银, 陈正宗, 刘正东, 等. 蒸汽温度对G115钢氧化行为的影响[J]. 钢铁研究学报, 2020,32(1):52−59. doi: 10.13228/j.boyuan.issn1001-0963.20190134Bai Yin, Chen Zhengzong, Liu Zhengdong, et al. Effect of steam temperature on oxidation behavior of G115 steel[J]. Journal of Iron and Steel Research, 2020, 32(1): 52-59. doi: 10.13228/j.boyuan.issn1001-0963.20190134 [13] Bian Meihua, Peng Jianning, Yin Liqun, et al. Relationship between pickling kinetics and scale structure of silicon steel at different cooling rates[J]. China Surface Engineering, 2019,32(2):88−97. (边美华, 彭家宁, 尹立群, 等. 不同冷却速率下硅钢氧化皮结构与酸洗动力学关系[J]. 中国表面工程, 2019,32(2):88−97. doi: 10.11933/j.issn.1007-9289.20181017003Bian Meihua, Peng Jianning, Yin Liqun, et al. Relationship between pickling kinetics and scale structure of silicon steel at different cooling rates [J]. China Surface Engineering, 2019, 32(2): 88-97. doi: 10.11933/j.issn.1007-9289.20181017003 [14] Cao G, Li Z, Tang J, et al. Oxidation kinetics and spallation model of oxide scale during cooling process of low carbon microalloyed steel[J]. High Temperature Materials and Processes, 2017,36(9):927−935. doi: 10.1515/htmp-2015-0248 [15] Yuan Q, Xu G, He B, et al. A method to reduce the oxide scale of silicon-containing steels by adjusting the heating route[J]. Transactions of the Indian Institute of Metals, 2018,71(3):677−684. doi: 10.1007/s12666-017-1200-0 [16] 侯清宇, 丁敬, 廖振成, 等. 铌对65SiCrV6弹簧钢氧化增重的影响[J]. 钢铁,2022,57(11):144-156.Hou Qingyu, Ding Jing, Liao Zhencheng, et al. Effects of Nb on oxidation weight gain of 65SiCrV6 spring steel [J]. Iron and Steel, 2022,57(11):144-156. [17] Jiao Yang, Liu Chunfeng, Zhang Jie, et al. Malfunctions analysis and maintenance of STA449F3 simultaneous thermal analyzer[J]. Analytical Instrumentation, 2021,(5):124−129. (焦阳, 刘春凤, 张杰, 等. STA449F3同步热分析仪故障分析与管理维护[J]. 分析仪器, 2021,(5):124−129. doi: 10.3969/j.issn.1001-232x.2021.05.026Jiao Yang, Liu Chunfeng, Zhang Jie, et al. Malfunctions analysis and maintenance of STA449 F3 simultaneous thermal analyzer[J]. Analytical Instrumentation, 2021(5): 124-129. doi: 10.3969/j.issn.1001-232x.2021.05.026 [18] 翟金坤. 金属高温腐蚀[M]. 北京: 北京航空航天大学出版社, 1994: 53-63.Zhai Jinkun. High temperature corrosion of metals [M]. Beijing: Bei Hang University Press, 1994: 53-63. [19] Hidayat T, Shishin D, Jak E, et al. Thermodynamic reevaluation of the Fe–O system[J]. Calphad, 2015,48:131−144. doi: 10.1016/j.calphad.2014.12.005 [20] 李美栓. 金属的高温腐蚀[M]. 北京:冶金工业出版社, 2001: 91−100.Li Meishuan. High temperature corrosion of metals [M]. Beijing: Metallurgical Industry Press, 2001: 91−100. -