留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加热速率对钢筋氧化动力学影响规律的研究

王宝山 张宏亮 马健 冯光宏

王宝山, 张宏亮, 马健, 冯光宏. 加热速率对钢筋氧化动力学影响规律的研究[J]. 钢铁钒钛, 2023, 44(3): 165-170. doi: 10.7513/j.issn.1004-7638.2023.03.025
引用本文: 王宝山, 张宏亮, 马健, 冯光宏. 加热速率对钢筋氧化动力学影响规律的研究[J]. 钢铁钒钛, 2023, 44(3): 165-170. doi: 10.7513/j.issn.1004-7638.2023.03.025
Wang Baoshan, Zhang Hongliang, Ma Jian, Feng Guanghong. Study of the heating rate effect on the oxidation kinetics of the corrosion-resistant rebar[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 165-170. doi: 10.7513/j.issn.1004-7638.2023.03.025
Citation: Wang Baoshan, Zhang Hongliang, Ma Jian, Feng Guanghong. Study of the heating rate effect on the oxidation kinetics of the corrosion-resistant rebar[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 165-170. doi: 10.7513/j.issn.1004-7638.2023.03.025

加热速率对钢筋氧化动力学影响规律的研究

doi: 10.7513/j.issn.1004-7638.2023.03.025
详细信息
    作者简介:

    王宝山,1987年出生,男,河北邯郸人,本科,在读博士,研究方向为钢材的控轧控冷及氧化控制, E-mail:17888843510@163.com

  • 中图分类号: TF76,TG151

Study of the heating rate effect on the oxidation kinetics of the corrosion-resistant rebar

  • 摘要: 通过热重分析方法和显微结构观察,研究了耐腐蚀钢筋不同加热速率下的氧化规律,并与等温氧化过程做了对比。结果表明,不同加热速率下钢筋的显微组织并没有明显差异,但是氧化层厚度随着加热速率的减小而增加。当加热速率小于10 ℃/min时,氧化层呈现明显的双层结构,但当加热速度为20 ℃/min时,氧化层几乎呈现单层结构。通过恒速加热试验建立了一种新的氧化活化能计算方法,与等温氧化试验所得值相比,加热速率为5、10、20 ℃/min时的相对误差分别为4.14%、5.12%和32.13%,因此,为了保证新方法的精度,试验需在较低的加热速率下进行。
  • 图  1  钢筋的微观组织

    Figure  1.  Optical microstructure of the rebar

    图  2  不同加热速率下的微观形貌

    Figure  2.  Optical microstructure of the rebar with different heating rates

    图  3  不同加热速率下的氧化动力学曲线

    Figure  3.  Oxidation kinetics curves of the experimental steels at various heating rates

    图  4  不同温度下试验钢的等温氧化增重曲线

    Figure  4.  Isothermal oxidation weight gain curves of the experimental steels at various temperatures

    图  5  试验钢的$\ln k$-${{10\;000} \mathord{\left/ {\vphantom {{10 000} T}} \right. } T}$关系曲线

    Figure  5.  Relationship curves of $\ln k$ and ${{10\;000} \mathord{\left/ {\vphantom {{10000} T}} \right. } T}$ for the testing steels

    图  6  20 ℃/min的速率加热过程中温度和奥氏体含量的变化

    Figure  6.  Changes of temperature and austenite content during heating at the heating rate of 20 ℃/min

    图  7  不同加热速率下的$\ln \left( {{m \mathord{\left/ {\vphantom {m S}} \right. } S}} \right) + \ln \left( {\dfrac{{d\left( {{m \mathord{\left/ {\vphantom {m S}} \right. } S}} \right)}}{{dT}}} \right)$-$\dfrac{1}{T}$关系

    Figure  7.  Relationship of $\ln \left( {{m \mathord{\left/ {\vphantom {m S}} \right. } S}} \right) + \ln \left( {\dfrac{{d\left( {{m \mathord{\left/ {\vphantom {m S}} \right. } S}} \right)}}{{dT}}} \right)$ and $\dfrac{1}{T}$ at different heating rates

    表  1  钢筋成分控制

    Table  1.   Chemical composition of the rebar %

    CSiMnPSCuCrV
    0.17~0.210.3~0.61.1~1.50.06~0.15<0.030.2~0.60.2~10.02~0.05
    下载: 导出CSV

    表  2  不同阶段的氧化速率常数

    Table  2.   Oxidation rate constants in different stages

    温度/ ℃k×104/ (kg·m−4·s−1)R2
    9007.5900.985
    95014.7000.988
    100024.5000.982
    下载: 导出CSV

    表  3  不同氧化试验获得的活化能

    Table  3.   Activation energy obtained under different testing conditions

    氧化方式加热速率/(℃·min−1)活化能/(kJ·mol−1)相对误差/%
    等温145.66
    恒速5151.684.14
    恒速10138.205.12
    恒速2099.8632.13
    下载: 导出CSV
  • [1] Yu Wei, Wang Jun, Liu Tao. Evolution and application of oxidation and surface quality control of hot rolled steel products[J]. Steel Rolling, 2017,34(3):1−6. (余伟, 王俊, 刘涛. 热轧钢材氧化及表面质量控制技术的发展及应用[J]. 轧钢, 2017,34(3):1−6. doi: 10.13228/j.boyuan.issn1003-9996.201700Y4

    Yu Wei, Wang Jun, Liu Tao. Evolution and application of oxidation and surface quality control of hot rolled steel products [J]. Steel Rolling, 2017, 34(3): 1-6. doi: 10.13228/j.boyuan.issn1003-9996.201700Y4
    [2] Du Xin, Luo Xiaoyang, Zhao Xiaolong, et al. Analysis and control of oxidation color of 590 MPa manganese steel strip by BAF[J]. China Metallurgy, 2019,29(8):30−33,70. (杜昕, 罗晓阳, 赵小龙, 等. 590 MPa含锰钢带罩式炉退火氧化色分析与控制[J]. 中国冶金, 2019,29(8):30−33,70.

    Du Xin, Luo Xiaoyang, Zhao Xiaolong, et al. Analysis and control of oxidation color of 590 MPa manganese steel strip by BAF[J]. China Metallurgy, 2019, 29(8): 30-33, 70.
    [3] Zhang Di, Guo Yunxia, Yu Shuai, et al. Effect of descaling process on the structure of oxide scale during the finishing rolling of medium and heavy plate[J]. J. of Anhui University of Technology (Natural Science), 2021,38(1):18−23. (张迪, 郭云侠, 于帅, 等. 中厚板精轧过程中除鳞工艺对氧化铁皮结构的影响[J]. 安徽工业大学学报(自然科学版), 2021,38(1):18−23.

    Zhang Di, Guo Yunxia, Yu Shuai, et al. Effect of descaling process on the structure of oxide scale during the finishing rolling of medium and heavy plate [J]. J. of Anhui University of Technology (Natural Science), 2021, 38(1): 18-23.
    [4] Bai Yin, Liu Zhengdong, Xie Jianxin, et al. Effect of pre-oxidation treatment on the behavior of high temperature oxidation in steam of G115 steel[J]. Acta Metallurgica Sinica, 2018,54(6):895−904. (白银, 刘正东, 谢建新, 等. 预氧化处理对G115钢高温蒸气氧化行为的影响[J]. 金属学报, 2018,54(6):895−904. doi: 10.11900/0412.1961.2017.00377

    Bai Yin, Liu Zhengdong, Xie Jianxin, et al. Effect of pre-oxidation treatment on the behavior of high temperature oxidation in steam of G115 steel[J]. Acta Metallurgica Sinica, 2018, 54(6): 895-904. doi: 10.11900/0412.1961.2017.00377
    [5] Qi W, Wang J, Li X, et al. Effect of oxide scale on corrosion behavior of HP-13Cr stainless steel during well completion process[J]. Journal of Materials Science & Technology, 2021,64:153−164.
    [6] Cheng Lei, Sun Bin, Gao Wei, et al. Effect of oxidation time and chromium content on high temperature oxidation behavior of Fe-Cr steel[J]. Heat Treatment of Metals, 2021,46(7):65−71. (程磊, 孙彬, 高炜, 等. 氧化时间及铬含量对Fe-Cr钢高温氧化行为的影响[J]. 金属热处理, 2021,46(7):65−71. doi: 10.13251/j.issn.0254-6051.2021.07.013

    Cheng Lei, Sun Bin, Gao Wei, et al. Effect of oxidation time and chromium content on high temperature oxidation behavior of Fe-Cr steel[J]. Heat Treatment of Metals, 2021, 46(7): 65-71. doi: 10.13251/j.issn.0254-6051.2021.07.013
    [7] Zhao Xiaolong, Wang Yongqi, Tang Xingchang, et al. Review on the oxidation mechanism and its research of steel billet in heating process[J]. Steel Rolling, 2019,36(6):66−68,82. (赵小龙, 王雍期, 唐兴昌, 等. 钢坯在加热过程中的氧化机理及其研究综述[J]. 轧钢, 2019,36(6):66−68,82. doi: 10.13228/j.boyuan.issn1003-9996.20190010

    Zhao Xiaolong, Wang Yongqi, Tang Xingchang, et al. Review on the oxidation mechanism and its research of steel billet in heating process [J]. Steel Rolling, 2019, 36(6): 66-68, 82. doi: 10.13228/j.boyuan.issn1003-9996.20190010
    [8] Yuan Q, Xu G, Liang W, et al. Effects of oxygen concentration on the passivation of Si-containing steel during high-temperature oxidation[J]. Corrosion Reviews, 2018,36(4):385−393. doi: 10.1515/corrrev-2017-0077
    [9] Li Zhifeng, He Shuai, Xing Shuqing, et al. Effects of chromium addition on high temperature oxidation behavior of hot rolled low carbon steel[J]. Iron and Steel, 2021,56(9):110−117. (李志峰, 贺帅, 邢淑清, 等. 铬元素添加对热轧低碳钢高温氧化行为的影响[J]. 钢铁, 2021,56(9):110−117. doi: 10.13228/j.boyuan.issn0449-749x.20210072

    Li Zhifeng, He Shuai, Xing Shuqing, et al. Effects of chromium addition on high temperature oxidation behavior of hot rolled low carbon steel [J]. Iron and Steel, 2021, 56(9): 110-117. doi: 10.13228/j.boyuan.issn0449-749x.20210072
    [10] Zhang Yingbo, Zou Dening, Wei Tongyu, et al. Effects of Al on high temperature oxidation behavior of a ferritic heat-resistant stainless steel[J]. Iron and Steel, 2021,56(4):70−75,92. (张英波, 邹德宁, 魏统宇, 等. 铝对铁素体耐热不锈钢高温氧化行为的影响[J]. 钢铁, 2021,56(4):70−75,92. doi: 10.13228/j.boyuan.issn0449-749x.20200345

    Zhang Yingbo, Zou Deyu, Wei Tongyu, et al. Effects of Al on high temperature oxidation behavior of a ferritic heat-resistant stainless steel[J]. Iron and Steel, 2021, 56(4): 70-75, 92. doi: 10.13228/j.boyuan.issn0449-749x.20200345
    [11] Jiao Junhong, Li Xin, Liu Zhenyu. Effect of rare earth Ce on high temperature oxidation behavior of 310S austenitic heat-resistant stainless steel[J]. Heat Treatment of Metals, 2022,47(1):120−124. (焦军红, 李鑫, 刘振宇. 稀土Ce对310S奥氏体耐热不锈钢高温氧化行为的影响[J]. 金属热处理, 2022,47(1):120−124.

    Jiao Junhong, Li Xin, Liu Zhenyu. Effect of rare earth Ce on high temperature oxidation behavior of 310 S austenitic heat-resistant stainless steel[J]. Heat Treatment of Metals, 2022, 47(1): 120-124.
    [12] Bai Yin, Chen Zhengzong, Liu Zhengdong, et al. Effect of steam temperature on oxidation behavior of G115 steel[J]. Journal of Iron and Steel Research, 2020,32(1):52−59. (白银, 陈正宗, 刘正东, 等. 蒸汽温度对G115钢氧化行为的影响[J]. 钢铁研究学报, 2020,32(1):52−59. doi: 10.13228/j.boyuan.issn1001-0963.20190134

    Bai Yin, Chen Zhengzong, Liu Zhengdong, et al. Effect of steam temperature on oxidation behavior of G115 steel[J]. Journal of Iron and Steel Research, 2020, 32(1): 52-59. doi: 10.13228/j.boyuan.issn1001-0963.20190134
    [13] Bian Meihua, Peng Jianning, Yin Liqun, et al. Relationship between pickling kinetics and scale structure of silicon steel at different cooling rates[J]. China Surface Engineering, 2019,32(2):88−97. (边美华, 彭家宁, 尹立群, 等. 不同冷却速率下硅钢氧化皮结构与酸洗动力学关系[J]. 中国表面工程, 2019,32(2):88−97. doi: 10.11933/j.issn.1007-9289.20181017003

    Bian Meihua, Peng Jianning, Yin Liqun, et al. Relationship between pickling kinetics and scale structure of silicon steel at different cooling rates [J]. China Surface Engineering, 2019, 32(2): 88-97. doi: 10.11933/j.issn.1007-9289.20181017003
    [14] Cao G, Li Z, Tang J, et al. Oxidation kinetics and spallation model of oxide scale during cooling process of low carbon microalloyed steel[J]. High Temperature Materials and Processes, 2017,36(9):927−935. doi: 10.1515/htmp-2015-0248
    [15] Yuan Q, Xu G, He B, et al. A method to reduce the oxide scale of silicon-containing steels by adjusting the heating route[J]. Transactions of the Indian Institute of Metals, 2018,71(3):677−684. doi: 10.1007/s12666-017-1200-0
    [16] 侯清宇, 丁敬, 廖振成, 等. 铌对65SiCrV6弹簧钢氧化增重的影响[J]. 钢铁,2022,57(11):144-156.

    Hou Qingyu, Ding Jing, Liao Zhencheng, et al. Effects of Nb on oxidation weight gain of 65SiCrV6 spring steel [J]. Iron and Steel, 2022,57(11):144-156.
    [17] Jiao Yang, Liu Chunfeng, Zhang Jie, et al. Malfunctions analysis and maintenance of STA449F3 simultaneous thermal analyzer[J]. Analytical Instrumentation, 2021,(5):124−129. (焦阳, 刘春凤, 张杰, 等. STA449F3同步热分析仪故障分析与管理维护[J]. 分析仪器, 2021,(5):124−129. doi: 10.3969/j.issn.1001-232x.2021.05.026

    Jiao Yang, Liu Chunfeng, Zhang Jie, et al. Malfunctions analysis and maintenance of STA449 F3 simultaneous thermal analyzer[J]. Analytical Instrumentation, 2021(5): 124-129. doi: 10.3969/j.issn.1001-232x.2021.05.026
    [18] 翟金坤. 金属高温腐蚀[M]. 北京: 北京航空航天大学出版社, 1994: 53-63.

    Zhai Jinkun. High temperature corrosion of metals [M]. Beijing: Bei Hang University Press, 1994: 53-63.
    [19] Hidayat T, Shishin D, Jak E, et al. Thermodynamic reevaluation of the Fe–O system[J]. Calphad, 2015,48:131−144. doi: 10.1016/j.calphad.2014.12.005
    [20] 李美栓. 金属的高温腐蚀[M]. 北京:冶金工业出版社, 2001: 91−100.

    Li Meishuan. High temperature corrosion of metals [M]. Beijing: Metallurgical Industry Press, 2001: 91−100.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  18
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-18
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回