中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加热速率对钢筋氧化动力学影响规律的研究

王宝山 张宏亮 马健 冯光宏

王宝山, 张宏亮, 马健, 冯光宏. 加热速率对钢筋氧化动力学影响规律的研究[J]. 钢铁钒钛, 2023, 44(3): 165-170. doi: 10.7513/j.issn.1004-7638.2023.03.025
引用本文: 王宝山, 张宏亮, 马健, 冯光宏. 加热速率对钢筋氧化动力学影响规律的研究[J]. 钢铁钒钛, 2023, 44(3): 165-170. doi: 10.7513/j.issn.1004-7638.2023.03.025
Wang Baoshan, Zhang Hongliang, Ma Jian, Feng Guanghong. Study of the heating rate effect on the oxidation kinetics of the corrosion-resistant rebar[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 165-170. doi: 10.7513/j.issn.1004-7638.2023.03.025
Citation: Wang Baoshan, Zhang Hongliang, Ma Jian, Feng Guanghong. Study of the heating rate effect on the oxidation kinetics of the corrosion-resistant rebar[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 165-170. doi: 10.7513/j.issn.1004-7638.2023.03.025

加热速率对钢筋氧化动力学影响规律的研究

doi: 10.7513/j.issn.1004-7638.2023.03.025
详细信息
    作者简介:

    王宝山,1987年出生,男,河北邯郸人,本科,在读博士,研究方向为钢材的控轧控冷及氧化控制, E-mail:17888843510@163.com

  • 中图分类号: TF76,TG151

Study of the heating rate effect on the oxidation kinetics of the corrosion-resistant rebar

  • 摘要: 通过热重分析方法和显微结构观察,研究了耐腐蚀钢筋不同加热速率下的氧化规律,并与等温氧化过程做了对比。结果表明,不同加热速率下钢筋的显微组织并没有明显差异,但是氧化层厚度随着加热速率的减小而增加。当加热速率小于10 ℃/min时,氧化层呈现明显的双层结构,但当加热速度为20 ℃/min时,氧化层几乎呈现单层结构。通过恒速加热试验建立了一种新的氧化活化能计算方法,与等温氧化试验所得值相比,加热速率为5、10、20 ℃/min时的相对误差分别为4.14%、5.12%和32.13%,因此,为了保证新方法的精度,试验需在较低的加热速率下进行。
  • 图  1  钢筋的微观组织

    Figure  1.  Optical microstructure of the rebar

    图  2  不同加热速率下的微观形貌

    Figure  2.  Optical microstructure of the rebar with different heating rates

    图  3  不同加热速率下的氧化动力学曲线

    Figure  3.  Oxidation kinetics curves of the experimental steels at various heating rates

    图  4  不同温度下试验钢的等温氧化增重曲线

    Figure  4.  Isothermal oxidation weight gain curves of the experimental steels at various temperatures

    图  5  试验钢的$\ln k$-${{10\;000} \mathord{\left/ {\vphantom {{10 000} T}} \right. } T}$关系曲线

    Figure  5.  Relationship curves of $\ln k$ and ${{10\;000} \mathord{\left/ {\vphantom {{10000} T}} \right. } T}$ for the testing steels

    图  6  20 ℃/min的速率加热过程中温度和奥氏体含量的变化

    Figure  6.  Changes of temperature and austenite content during heating at the heating rate of 20 ℃/min

    图  7  不同加热速率下的$\ln \left( {{m \mathord{\left/ {\vphantom {m S}} \right. } S}} \right) + \ln \left( {\dfrac{{d\left( {{m \mathord{\left/ {\vphantom {m S}} \right. } S}} \right)}}{{dT}}} \right)$-$\dfrac{1}{T}$关系

    Figure  7.  Relationship of $\ln \left( {{m \mathord{\left/ {\vphantom {m S}} \right. } S}} \right) + \ln \left( {\dfrac{{d\left( {{m \mathord{\left/ {\vphantom {m S}} \right. } S}} \right)}}{{dT}}} \right)$ and $\dfrac{1}{T}$ at different heating rates

    表  1  钢筋成分控制

    Table  1.   Chemical composition of the rebar %

    CSiMnPSCuCrV
    0.17~0.210.3~0.61.1~1.50.06~0.15<0.030.2~0.60.2~10.02~0.05
    下载: 导出CSV

    表  2  不同阶段的氧化速率常数

    Table  2.   Oxidation rate constants in different stages

    温度/ ℃k×104/ (kg·m−4·s−1)R2
    9007.5900.985
    95014.7000.988
    100024.5000.982
    下载: 导出CSV

    表  3  不同氧化试验获得的活化能

    Table  3.   Activation energy obtained under different testing conditions

    氧化方式加热速率/(℃·min−1)活化能/(kJ·mol−1)相对误差/%
    等温145.66
    恒速5151.684.14
    恒速10138.205.12
    恒速2099.8632.13
    下载: 导出CSV
  • [1] Yu Wei, Wang Jun, Liu Tao. Evolution and application of oxidation and surface quality control of hot rolled steel products[J]. Steel Rolling, 2017,34(3):1−6. (余伟, 王俊, 刘涛. 热轧钢材氧化及表面质量控制技术的发展及应用[J]. 轧钢, 2017,34(3):1−6. doi: 10.13228/j.boyuan.issn1003-9996.201700Y4

    Yu Wei, Wang Jun, Liu Tao. Evolution and application of oxidation and surface quality control of hot rolled steel products [J]. Steel Rolling, 2017, 34(3): 1-6. doi: 10.13228/j.boyuan.issn1003-9996.201700Y4
    [2] Du Xin, Luo Xiaoyang, Zhao Xiaolong, et al. Analysis and control of oxidation color of 590 MPa manganese steel strip by BAF[J]. China Metallurgy, 2019,29(8):30−33,70. (杜昕, 罗晓阳, 赵小龙, 等. 590 MPa含锰钢带罩式炉退火氧化色分析与控制[J]. 中国冶金, 2019,29(8):30−33,70.

    Du Xin, Luo Xiaoyang, Zhao Xiaolong, et al. Analysis and control of oxidation color of 590 MPa manganese steel strip by BAF[J]. China Metallurgy, 2019, 29(8): 30-33, 70.
    [3] Zhang Di, Guo Yunxia, Yu Shuai, et al. Effect of descaling process on the structure of oxide scale during the finishing rolling of medium and heavy plate[J]. J. of Anhui University of Technology (Natural Science), 2021,38(1):18−23. (张迪, 郭云侠, 于帅, 等. 中厚板精轧过程中除鳞工艺对氧化铁皮结构的影响[J]. 安徽工业大学学报(自然科学版), 2021,38(1):18−23.

    Zhang Di, Guo Yunxia, Yu Shuai, et al. Effect of descaling process on the structure of oxide scale during the finishing rolling of medium and heavy plate [J]. J. of Anhui University of Technology (Natural Science), 2021, 38(1): 18-23.
    [4] Bai Yin, Liu Zhengdong, Xie Jianxin, et al. Effect of pre-oxidation treatment on the behavior of high temperature oxidation in steam of G115 steel[J]. Acta Metallurgica Sinica, 2018,54(6):895−904. (白银, 刘正东, 谢建新, 等. 预氧化处理对G115钢高温蒸气氧化行为的影响[J]. 金属学报, 2018,54(6):895−904. doi: 10.11900/0412.1961.2017.00377

    Bai Yin, Liu Zhengdong, Xie Jianxin, et al. Effect of pre-oxidation treatment on the behavior of high temperature oxidation in steam of G115 steel[J]. Acta Metallurgica Sinica, 2018, 54(6): 895-904. doi: 10.11900/0412.1961.2017.00377
    [5] Qi W, Wang J, Li X, et al. Effect of oxide scale on corrosion behavior of HP-13Cr stainless steel during well completion process[J]. Journal of Materials Science & Technology, 2021,64:153−164.
    [6] Cheng Lei, Sun Bin, Gao Wei, et al. Effect of oxidation time and chromium content on high temperature oxidation behavior of Fe-Cr steel[J]. Heat Treatment of Metals, 2021,46(7):65−71. (程磊, 孙彬, 高炜, 等. 氧化时间及铬含量对Fe-Cr钢高温氧化行为的影响[J]. 金属热处理, 2021,46(7):65−71. doi: 10.13251/j.issn.0254-6051.2021.07.013

    Cheng Lei, Sun Bin, Gao Wei, et al. Effect of oxidation time and chromium content on high temperature oxidation behavior of Fe-Cr steel[J]. Heat Treatment of Metals, 2021, 46(7): 65-71. doi: 10.13251/j.issn.0254-6051.2021.07.013
    [7] Zhao Xiaolong, Wang Yongqi, Tang Xingchang, et al. Review on the oxidation mechanism and its research of steel billet in heating process[J]. Steel Rolling, 2019,36(6):66−68,82. (赵小龙, 王雍期, 唐兴昌, 等. 钢坯在加热过程中的氧化机理及其研究综述[J]. 轧钢, 2019,36(6):66−68,82. doi: 10.13228/j.boyuan.issn1003-9996.20190010

    Zhao Xiaolong, Wang Yongqi, Tang Xingchang, et al. Review on the oxidation mechanism and its research of steel billet in heating process [J]. Steel Rolling, 2019, 36(6): 66-68, 82. doi: 10.13228/j.boyuan.issn1003-9996.20190010
    [8] Yuan Q, Xu G, Liang W, et al. Effects of oxygen concentration on the passivation of Si-containing steel during high-temperature oxidation[J]. Corrosion Reviews, 2018,36(4):385−393. doi: 10.1515/corrrev-2017-0077
    [9] Li Zhifeng, He Shuai, Xing Shuqing, et al. Effects of chromium addition on high temperature oxidation behavior of hot rolled low carbon steel[J]. Iron and Steel, 2021,56(9):110−117. (李志峰, 贺帅, 邢淑清, 等. 铬元素添加对热轧低碳钢高温氧化行为的影响[J]. 钢铁, 2021,56(9):110−117. doi: 10.13228/j.boyuan.issn0449-749x.20210072

    Li Zhifeng, He Shuai, Xing Shuqing, et al. Effects of chromium addition on high temperature oxidation behavior of hot rolled low carbon steel [J]. Iron and Steel, 2021, 56(9): 110-117. doi: 10.13228/j.boyuan.issn0449-749x.20210072
    [10] Zhang Yingbo, Zou Dening, Wei Tongyu, et al. Effects of Al on high temperature oxidation behavior of a ferritic heat-resistant stainless steel[J]. Iron and Steel, 2021,56(4):70−75,92. (张英波, 邹德宁, 魏统宇, 等. 铝对铁素体耐热不锈钢高温氧化行为的影响[J]. 钢铁, 2021,56(4):70−75,92. doi: 10.13228/j.boyuan.issn0449-749x.20200345

    Zhang Yingbo, Zou Deyu, Wei Tongyu, et al. Effects of Al on high temperature oxidation behavior of a ferritic heat-resistant stainless steel[J]. Iron and Steel, 2021, 56(4): 70-75, 92. doi: 10.13228/j.boyuan.issn0449-749x.20200345
    [11] Jiao Junhong, Li Xin, Liu Zhenyu. Effect of rare earth Ce on high temperature oxidation behavior of 310S austenitic heat-resistant stainless steel[J]. Heat Treatment of Metals, 2022,47(1):120−124. (焦军红, 李鑫, 刘振宇. 稀土Ce对310S奥氏体耐热不锈钢高温氧化行为的影响[J]. 金属热处理, 2022,47(1):120−124.

    Jiao Junhong, Li Xin, Liu Zhenyu. Effect of rare earth Ce on high temperature oxidation behavior of 310 S austenitic heat-resistant stainless steel[J]. Heat Treatment of Metals, 2022, 47(1): 120-124.
    [12] Bai Yin, Chen Zhengzong, Liu Zhengdong, et al. Effect of steam temperature on oxidation behavior of G115 steel[J]. Journal of Iron and Steel Research, 2020,32(1):52−59. (白银, 陈正宗, 刘正东, 等. 蒸汽温度对G115钢氧化行为的影响[J]. 钢铁研究学报, 2020,32(1):52−59. doi: 10.13228/j.boyuan.issn1001-0963.20190134

    Bai Yin, Chen Zhengzong, Liu Zhengdong, et al. Effect of steam temperature on oxidation behavior of G115 steel[J]. Journal of Iron and Steel Research, 2020, 32(1): 52-59. doi: 10.13228/j.boyuan.issn1001-0963.20190134
    [13] Bian Meihua, Peng Jianning, Yin Liqun, et al. Relationship between pickling kinetics and scale structure of silicon steel at different cooling rates[J]. China Surface Engineering, 2019,32(2):88−97. (边美华, 彭家宁, 尹立群, 等. 不同冷却速率下硅钢氧化皮结构与酸洗动力学关系[J]. 中国表面工程, 2019,32(2):88−97. doi: 10.11933/j.issn.1007-9289.20181017003

    Bian Meihua, Peng Jianning, Yin Liqun, et al. Relationship between pickling kinetics and scale structure of silicon steel at different cooling rates [J]. China Surface Engineering, 2019, 32(2): 88-97. doi: 10.11933/j.issn.1007-9289.20181017003
    [14] Cao G, Li Z, Tang J, et al. Oxidation kinetics and spallation model of oxide scale during cooling process of low carbon microalloyed steel[J]. High Temperature Materials and Processes, 2017,36(9):927−935. doi: 10.1515/htmp-2015-0248
    [15] Yuan Q, Xu G, He B, et al. A method to reduce the oxide scale of silicon-containing steels by adjusting the heating route[J]. Transactions of the Indian Institute of Metals, 2018,71(3):677−684. doi: 10.1007/s12666-017-1200-0
    [16] 侯清宇, 丁敬, 廖振成, 等. 铌对65SiCrV6弹簧钢氧化增重的影响[J]. 钢铁,2022,57(11):144-156.

    Hou Qingyu, Ding Jing, Liao Zhencheng, et al. Effects of Nb on oxidation weight gain of 65SiCrV6 spring steel [J]. Iron and Steel, 2022,57(11):144-156.
    [17] Jiao Yang, Liu Chunfeng, Zhang Jie, et al. Malfunctions analysis and maintenance of STA449F3 simultaneous thermal analyzer[J]. Analytical Instrumentation, 2021,(5):124−129. (焦阳, 刘春凤, 张杰, 等. STA449F3同步热分析仪故障分析与管理维护[J]. 分析仪器, 2021,(5):124−129. doi: 10.3969/j.issn.1001-232x.2021.05.026

    Jiao Yang, Liu Chunfeng, Zhang Jie, et al. Malfunctions analysis and maintenance of STA449 F3 simultaneous thermal analyzer[J]. Analytical Instrumentation, 2021(5): 124-129. doi: 10.3969/j.issn.1001-232x.2021.05.026
    [18] 翟金坤. 金属高温腐蚀[M]. 北京: 北京航空航天大学出版社, 1994: 53-63.

    Zhai Jinkun. High temperature corrosion of metals [M]. Beijing: Bei Hang University Press, 1994: 53-63.
    [19] Hidayat T, Shishin D, Jak E, et al. Thermodynamic reevaluation of the Fe–O system[J]. Calphad, 2015,48:131−144. doi: 10.1016/j.calphad.2014.12.005
    [20] 李美栓. 金属的高温腐蚀[M]. 北京:冶金工业出版社, 2001: 91−100.

    Li Meishuan. High temperature corrosion of metals [M]. Beijing: Metallurgical Industry Press, 2001: 91−100.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  63
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-18
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回