留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛含量对汽车用贝氏体-马氏体双相钢抗氢脆行为的影响

李峥杰 张玮 刘小军

李峥杰, 张玮, 刘小军. 钛含量对汽车用贝氏体-马氏体双相钢抗氢脆行为的影响[J]. 钢铁钒钛, 2023, 44(3): 171-176. doi: 10.7513/j.issn.1004-7638.2023.03.026
引用本文: 李峥杰, 张玮, 刘小军. 钛含量对汽车用贝氏体-马氏体双相钢抗氢脆行为的影响[J]. 钢铁钒钛, 2023, 44(3): 171-176. doi: 10.7513/j.issn.1004-7638.2023.03.026
Li Zhengjie, Zhang Wei, Liu Xiaojun. Effect of titanium content on hydrogen embrittlement behavior of bainite/martensite dual-phase steel[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 171-176. doi: 10.7513/j.issn.1004-7638.2023.03.026
Citation: Li Zhengjie, Zhang Wei, Liu Xiaojun. Effect of titanium content on hydrogen embrittlement behavior of bainite/martensite dual-phase steel[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 171-176. doi: 10.7513/j.issn.1004-7638.2023.03.026

钛含量对汽车用贝氏体-马氏体双相钢抗氢脆行为的影响

doi: 10.7513/j.issn.1004-7638.2023.03.026
基金项目: 中央高校基本科研业务费专项资金资助项目(300202118302)。
详细信息
    作者简介:

    李峥杰,1984年出生,男,汉族,河南鹤壁人,硕士研究生,讲师,主要研究方向:车辆工程材料研发, E-mail:489563136@qq.com

  • 中图分类号: TF823,TF76

Effect of titanium content on hydrogen embrittlement behavior of bainite/martensite dual-phase steel

  • 摘要: 冶炼了三种不同钛含量(0、0.9%和1.8%)的贝氏体-马氏体双相钢,通过热处理调整试样中贝氏体含量使其保持相同的强度水平,借助电化学充氢和慢应变速率拉伸试验手段研究了贝氏体含量对贝氏体-马氏体双相钢抗氢脆行为的影响。试验结果表明,钛含量为1.8%的试验钢中具有最高的贝氏体含量和最优异的抗氢脆性能,这主要归因于渗碳体-铁素体界面位错等不可逆陷阱对氢原子的俘获作用。为了提高贝氏体-马氏体双相钢的抗氢脆能力,可增加贝氏体组织中细小渗碳体颗粒的数量,为塑性变形过程中氢的迁移提供更多的不可逆氢陷阱。
  • 图  1  拉伸样尺寸(单位:mm)

    Figure  1.  Dimensions of tensile specimen in mm

    图  2  试样经热处理后的原奥氏体晶界形貌

    Figure  2.  Grain boundary morphology of original austenite after heat treatment

    (a) 1# ;(b) 2# (;c) 3#

    图  3  试样的EBSD图相分布

    Figure  3.  EBSD image quality maps of specimens

    (a) 1# ;(b) 2# ;(c) 3#

    图  4  试样的SEM显微组织及局部放大

    Figure  4.  SEM micrographs and the magnified images of samples

    (a) 1# ;(b) 2# ;(c) 3#

    图  5  试样的氢渗透曲线 (a) 及氢扩散速率、氢浓度 (b)

    Figure  5.  Hydrogen permeation curve (a) , hydrogen diffusion rate and hydrogen concentration (b) of the samples

    图  6  充氢试样的氢解吸曲线

    Figure  6.  Hydrogen desorption curve of hydrogen filled sample:(a) before stretching,(b) after stretching

    图  7  试样断裂强度随充氢电流密度的变化

    Figure  7.  Variation of fracture strength of sample with hydrogen charging current density

    图  8  充氢电流密度10 A/m2条件下充氢试样的断口形貌

    Figure  8.  Fracture surface morphology of hydrogen charged specimens with hydrogen charging density 10 A/m2

    (a) 1# ;(b) 2# ;(c) 3#

    表  1  试验钢的主要化学成分

    Table  1.   Main chemical compositions of tested steels %

    编号CSiMnCrVMoTi
    1#0.4030.1020.4131.020.1080.6010.003
    2#0.3980.1000.4061.010.1070.5960.902
    3#0.4050.1070.4071.020.1100.5991.82
    下载: 导出CSV
  • [1] Fang Hongsheng, Liu Dongyu, Chang Kaidi, et al. Microstructure and properties of 1500 MPa economical bainite / martensite multiphase steel[J]. Journal of Iron and Steel Research, 2001,13(3):31−36. (方鸿生, 刘东雨, 常开地, 等. 1 500 MPa级经济型贝氏体/马氏体复相钢的组织与性能[J]. 钢铁研究学报, 2001,13(3):31−36. doi: 10.3321/j.issn:1001-0963.2001.03.008

    Fang Hongsheng, Liu Dongyu, Chang Kaidi, et al. Microstructure and properties of 1500 MPa economical Bainite / martensite multiphase steel[J]. Journal of iron and steel research, 2001, 13 (3): 31-36 doi: 10.3321/j.issn:1001-0963.2001.03.008
    [2] Chang Kaidi, Gu Jialin, Fang Hongsheng. Effect of heat treatment process on hydrogen embrittlement sensitivity of new bainite / martensite dual phase high strength steel[J]. World Steel, 2002,2(4):23−27. (常开地, 顾家琳, 方鸿生. 热处理工艺对新型贝氏体/马氏体双相高强钢氢脆敏感性的影响[J]. 世界钢铁, 2002,2(4):23−27.

    Chang Kaidi, Gu Jialin, Fang Hongsheng. Effect of heat treatment process on hydrogen embrittlement sensitivity of new bainite / martensite dual phase high strength steel[J]. World steel, 2002, 2 (4): 23-27
    [3] Guo Haoran, Gao Guhui, Gui Xiaolu, et al. Effect of microstructure on hydrogen embrittlement sensitivity of bainite reinforcement[J]. Materials Reports, 2019,33(10):1717−1722. (郭浩冉, 高古辉, 桂晓露, 等. 显微组织对贝氏体钢筋氢脆敏感性的影响[J]. 材料导报, 2019,33(10):1717−1722. doi: 10.11896/cldb.17090254

    Guo Haoran, Gao guhui, GUI Xiaolu, et al. Effect of microstructure on hydrogen embrittlement sensitivity of bainite reinforcement[J]. Material guide, 2019, 33 (10): 1717-1722 doi: 10.11896/cldb.17090254
    [4] Chen Jun, Li Chengji, Zhang Shouhua. Hydrogen embrittlement fracture behavior of ferrite granular bainite dual phase steel after cold deformation[J]. Materials Science Progress, 1988,3:68−72. (陈俊, 李承基, 章守华. 铁素体-粒状贝氏体型双相钢冷变形后的氢脆断裂行为[J]. 材料科学进展, 1988,3:68−72.

    Chen Jun, Li Chengji, Zhang Shouhua. Hydrogen embrittlement fracture behavior of ferrite granular bainite dual phase steel after cold deformation[J]. Advances in materials science, 1988, 3: 68-72
    [5] Chang Kaidi, Gu Jialin, Fang Hongsheng, et al. Hydrogen trap in bainite/martensite duplex high strength steel[J]. Heat Treatment of Metals, 2003,28(3):20−23. (常开地, 顾家琳, 方鸿生, 等. 贝氏体/马氏体复相高强钢中的氢陷阱[J]. 金属热处理, 2003,28(3):20−23. doi: 10.3969/j.issn.0254-6051.2003.03.006

    Chang Kaidi, Gu Jialin, Fang Hongsheng, et al. Hydrogen trap in Bainite / Martensite Duplex high strength steel[J]. Metal heat treatment, 2003, 28 (3): 20-20 doi: 10.3969/j.issn.0254-6051.2003.03.006
    [6] Li Xinfeng, Zhang Jin, Shen Sicong, et al. Effect of tempering temperature and inclusions on hydrogen-assisted fracture behaviors of a low alloy steel[J]. Materials Science and Engineering A, 2017,682:359−369. doi: 10.1016/j.msea.2016.11.064
    [7] Nagao Akihide, Smith Cynthia D, Dadfarnia Mohsen, et al. The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel[J]. Acta Material, 2012,60:5182−5189. doi: 10.1016/j.actamat.2012.06.040
    [8] Su Liting, Zhang Fucheng, Zheng Chunlei, et al. Effect of heat treatment process and hydrogen charging on compressive properties of gcr15simoal bearing steel[J]. Transactions of Materials and Heat Treatment, 2017,38(2):111−117. (苏丽婷, 张福成, 郑春雷, 等. 热处理工艺和充氢对GCr15SiMoAl轴承钢压缩性能的影响[J]. 材料热处理学报, 2017,38(2):111−117.

    Su Liting, Zhang Fucheng, Zheng Chunlei, et al. Effect of heat treatment process and hydrogen charging on compressive properties of gcr15 simoal bearing steel[J]. Journal of material heat treatment, 2017, 038 (2): 111-117
    [9] Chen Kang, Xia Bin, Xu Le, et al. Hydrogen embrittlement sensitivity of 2000 MPa martensitic steel[J]. Transactions of Materials and Heat Treatment, 2017,(8):76−82. (谌康, 夏彬, 徐乐, 等. 2000 MPa级马氏体钢的氢脆敏感性[J]. 材料热处理学报, 2017,(8):76−82.

    Chen Kang, Xia Bin, Xu Le, et al. Hydrogen embrittlement sensitivity of 2000 mPa martensitic steel[J]. Journal of material heat treatment, 2017 (8): 76-82
    [10] Pan Chuan, Li Zhengbang, Tian Zhiling, et al. Quantitative study on hydrogen embrittlement of stainless steel caused by hydrogen and hydrogen induced martensite[J]. Science in Chiana (Series E), 2002,3(3):57−63. (潘川, 李正邦, 田志凌, 等. 氢和氢致马氏体导致不锈钢氢脆的定量研究[J]. 中国科学E辑:技术科学, 2002,3(3):57−63.

    Pan Chuan, Li Zhengbang, Tian Zhiling, et al. Quantitative study on hydrogen embrittlement of stainless steel caused by hydrogen and hydrogen induced martensite[J]. Chinese science e: technical science, 2002, 3 (3): 57-63
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  15
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-06
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回