留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脱氧剂对M50NiL钢中非金属夹杂物的影响

李兵 吴志伟 陈文雄 王小强 郎东 张军 毛健

李兵, 吴志伟, 陈文雄, 王小强, 郎东, 张军, 毛健. 脱氧剂对M50NiL钢中非金属夹杂物的影响[J]. 钢铁钒钛, 2023, 44(3): 177-182. doi: 10.7513/j.issn.1004-7638.2023.03.027
引用本文: 李兵, 吴志伟, 陈文雄, 王小强, 郎东, 张军, 毛健. 脱氧剂对M50NiL钢中非金属夹杂物的影响[J]. 钢铁钒钛, 2023, 44(3): 177-182. doi: 10.7513/j.issn.1004-7638.2023.03.027
Li Bing, Wu Zhiwei, Chen Wenxiong, Wang Xiaoqiang, Lang Dong, Zhang Jun, Mao Jian. Effect of deoxidizer on non-metallic inclusions in M50NiL steel[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 177-182. doi: 10.7513/j.issn.1004-7638.2023.03.027
Citation: Li Bing, Wu Zhiwei, Chen Wenxiong, Wang Xiaoqiang, Lang Dong, Zhang Jun, Mao Jian. Effect of deoxidizer on non-metallic inclusions in M50NiL steel[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 177-182. doi: 10.7513/j.issn.1004-7638.2023.03.027

脱氧剂对M50NiL钢中非金属夹杂物的影响

doi: 10.7513/j.issn.1004-7638.2023.03.027
基金项目: 四川省科技厅研发项目(高品质高温含钒轴承钢研制,编号:2022YFG0097)。
详细信息
    作者简介:

    李兵,1997年出生,男,河南邓州人,硕士研究生,研究方向:结构材料组织与性能,E-mail:872945523@qq.com

    通讯作者:

    毛健,1971年出生,男,四川乐至人,博士,教授,研究方向:结构材料与功能材料,E-mail:maojian@scu.edu.cn

  • 中图分类号: TF76,TF704.1

Effect of deoxidizer on non-metallic inclusions in M50NiL steel

  • 摘要: 在航空发动机用轴承钢M50NiL的真空冶炼过程中使用不同脱氧剂进行脱氧 重点研究了不同脱氧剂类型对钢中夹杂物形貌、类型、尺寸及数量密度的影响。结果表明,未添加脱氧剂时,钢中夹杂物主要为Al2O3和铝镁尖晶石;使用Al-RE作为脱氧剂后,钢中夹杂物的主要类型为稀土夹杂物;而使用Al-RE-Si-Mn作为脱氧剂后,钢中夹杂物类型、尺寸及分布特征与Al-RE脱氧剂基本相当。稀土元素的加入能明显改善钢中夹杂物的类型及形貌,使主要夹杂物类型由带有棱角且形状不规则的富Al2O3型夹杂物转变为近球形的稀土夹杂物,同时降低了钢中夹杂物的最大尺寸,以及大尺寸的Al2O3夹杂物数量,但过量的稀土使得钢中出现了稀土夹杂物的团聚。
  • 图  1  不同试验钢中夹杂物的类型及分布

    Figure  1.  Types and distribution of inclusions in different test steels

    图  2  不同试验钢中稀土夹杂物、Al2O3以及SiO2夹杂物的数量密度

    Figure  2.  Number density of rare earth inclusions, Al2O3 and SiO2 inclusions in different test steels

    图  3  夹杂物生成的吉布斯自由能

    Figure  3.  Gibbs free energy of inclusion formation

    图  4  未加脱氧剂M50NiL钢中典型夹杂物的形貌(SEM)及元素分布

    Figure  4.  Morphology (SEM) and element distribution of typical inclusions in M50NiL steel without deoxidizer

    图  5  加入Al-RE脱氧剂后M50NiL钢中典型夹杂物的形貌(SEM)及元素分布

    Figure  5.  Morphology (SEM) and element distribution of typical inclusions in M50NiL steel after adding Al-RE deoxidizer

    图  6  加入Al-RE-Si-Mn脱氧剂后M50NiL钢中典型夹杂物的形貌(SEM)及元素分布

    Figure  6.  Morphology (SEM) and element distribution of typical inclusions in M50NiL steel after adding Al-RE-Si-Mn deoxidizer

    表  1  M50NiL钢主要化学成分

    Table  1.   Main chemical composition of M50NiL steel %

    CCrMoNiVFe
    0.11~0.154~4.254~4.53.2~3.61.13~1.33Bal.
    下载: 导出CSV

    表  2  冶炼原料中的铝元素含量

    Table  2.   Aluminum content in smelting raw materials %

    纯Fe金属CrMo条金属VNi板
    0.0216<0.0005<0.00050.10<0.0005
    下载: 导出CSV

    表  3  不同试验钢中主要夹杂物类型的尺寸分布

    Table  3.   Size distribution of main inclusions in different test steels

    脱氧剂类型Al2O3夹杂粒级占比/%稀土夹杂粒级占比/%
    0~2 μm2~10 μm>10 μm0~2 μm2~10 μm>10 μm
    未加脱氧剂80.818.11.0
    加Al-RE29.965.15.054.944.80.4
    加Al-RE-Si-Mn31.364.14.768.031.80.2
    下载: 导出CSV
  • [1] Bhattacharyya Abir, Subhash Ghatu, Arakere Nagaraj. Evolution of subsurface plastic zone due to rolling contact fatigue of M50NiL case hardened bearing steel[J]. Int J Fatigue, 2014,59:102−113. doi: 10.1016/j.ijfatigue.2013.09.010
    [2] Wang Fangfang, Zhou Chungen, Zheng Lijing, et al. Corrosion resistance of carbon ion-implanted M50NiL aerospace bearing steel[J]. Prog Nat Sci:Mater Int, 2017,27(5):615−621. doi: 10.1016/j.pnsc.2017.07.003
    [3] Wang P, Wang B, Liu Y, et al. Effects of inclusion types on the high-cycle fatigue properties of high-strength steel[J]. Scripta Mater, 2022,206:114232. doi: 10.1016/j.scriptamat.2021.114232
    [4] Cerullo Michele, Tvergaard Viggo. Micromechanical study of the effect of inclusions on fatigue failure in a roller bearing[J]. International Journal of Structural Integrity, 2015,6(1):124−141. doi: 10.1108/IJSI-04-2014-0020
    [5] Bhadeshia H K D H. Steels for bearings[J]. Prog Mater Sci, 2012,57(2):268−435. doi: 10.1016/j.pmatsci.2011.06.002
    [6] Pan Tao, Yang Zhigang, Bai Bingzhe, et al. Study on thermal stress and strain energy in γ-Fe matrix around inclusion caused by thermal coefficient difference[J]. Acta Metallurgica Sinica, 2003,(10):1037−1042. (潘涛, 杨志刚, 白秉哲, 等. 钢中夹杂物与奥氏体基体热膨胀系数差异导致的热应力和应变能研究[J]. 金属学报, 2003,(10):1037−1042. doi: 10.3321/j.issn:0412-1961.2003.10.005

    Pan Tao, Yang Zhigang, Bai Bingzhe, et al. Study on thermal stress and strain energy in γ-Fe matrix around inclusion caused by thermal coefficient difference[J]. Acta Metallurgica Sinica, 2003 (10): 1037-1042. doi: 10.3321/j.issn:0412-1961.2003.10.005
    [7] 栾心汉. 小电炉炼钢[M]. 西安: 陕西科学技术出版社, 1982.

    Luan Xinhan. A small electric furnace makes steel[M]. Xi, an: Shaanxi Science and Technology Press, 1982.
    [8] Gu Chao, Bao Yanping, Gan Peng, et al. An experimental study on the impact of deoxidation methods on the fatigue properties of bearing steels[J]. Steel Research International, 2018,89(9):1800129. doi: 10.1002/srin.201800129
    [9] Xiao Wei, Wang Min, Bao Yanping. The research of low-oxygen control and oxygen behavior during RH process in silicon-deoxidization bearing steel[J]. Metals, 2019,9(8):812. doi: 10.3390/met9080812
    [10] Zheng Hongyan, Guo Shuqiang, Qiao Mengran, et al. Study on the modification of inclusions by Ca treatment in GCr18Mo bearing steel[J]. Advances in Manufacturing, 2019,7(4):438−447. doi: 10.1007/s40436-019-00266-1
    [11] Hsu Chinchuan, Chung Hohua. Analysis of influence of aluminum content on inclusion characteristic and fatigue life of bearing steel using statistics of extreme values[J]. Advanced Materials Research, 2014,939:11−18. doi: 10.4028/www.scientific.net/AMR.939.11
    [12] Xiao Wei, Bao Yanping, Gu Chao, et al. Ultrahigh cycle fatigue fracture mechanism of high-quality bearing steel obtained through different deoxidation methods[J]. International Journal of Minerals, Metallurgy and Materials, 2021,28(5):804−815. doi: 10.1007/s12613-021-2253-y
    [13] Wang Le, Liu Liu, Yao Tonglu, et al. New process development of refining clean bearing steel with low cost[J]. Steelmaking, 2018,34(3):67−72. (王乐, 刘浏, 姚同路, 等. 低成本轴承钢洁净冶炼新工艺的开发[J]. 炼钢, 2018,34(3):67−72.

    Wang Le, Liu Liu, Yao Tonglu, et al. New process development of refining clean bearing steel with low cost[J]. Steelmaking, 2018, 34(3): 67-72.
    [14] Yang Chaoyun, Luan Yikun, Li Dianzhong, et al. Effects of rare earth elements on inclusions and impact toughness of high-carbon chromium bearing steel[J]. Journal of Materials Science & Technology, 2019,35(7):1298−1308.
    [15] Wu Hua, Yan Su, Yang You, et al. Influence of inclusions on fatigue properties of 18Mn2SiVB non-quenched steel[J]. Heat Treat Met, 2006,(3):88−90. (吴化, 闫肃, 杨友, 等. 18Mn2SiVB非调质钢中夹杂物对其疲劳性能的影响[J]. 金属热处理, 2006,(3):88−90. doi: 10.3969/j.issn.0254-6051.2006.03.024

    Wu Hua, Yan Su, Yang You, et al. Influence of inclusions on fatigue properties of 18 Mn2 SiVB non-quenched steel[J]. Heat Treat Met, 2006 (3): 88-90. doi: 10.3969/j.issn.0254-6051.2006.03.024
    [16] 邓爱军. 高铁用轴承钢冶金过程的关键技术研究[D]. 马鞍山: 安徽工业大学, 2019.

    Deng Aijun. Research on the key technology of metallurgical process of bearing steel for high-speed rail[D]. Ma'anshan: Anhui University of Technology, 2019.
    [17] GB/T 10561-2005. 钢中非金属夹杂物含量的测定标准评级图显微检验法[S].

    GB/T 10561-2005. Standard grading chart microscopic inspection method for determination of non-metallic inclusion content in steel[S].
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  14
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-26
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回