留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙化提钒过程中元素迁移转化行为的研究

刘羲 蒲宇文 徐宗源 唐康 郑国灿 陈燕 刘作华 杜军 彭毅 陶长元

刘羲, 蒲宇文, 徐宗源, 唐康, 郑国灿, 陈燕, 刘作华, 杜军, 彭毅, 陶长元. 钙化提钒过程中元素迁移转化行为的研究[J]. 钢铁钒钛, 2023, 44(4): 1-9. doi: 10.7513/j.issn.1004-7638.2023.04.001
引用本文: 刘羲, 蒲宇文, 徐宗源, 唐康, 郑国灿, 陈燕, 刘作华, 杜军, 彭毅, 陶长元. 钙化提钒过程中元素迁移转化行为的研究[J]. 钢铁钒钛, 2023, 44(4): 1-9. doi: 10.7513/j.issn.1004-7638.2023.04.001
Liu Xi, Pu Yuwen, Xu Zongyuan, Tang Kang, Zheng Guocan, Chen Yan, Liu Zuohua, Du Jun, Peng Yi, Tao Changyuan. Study on migration and transformation behavior of elements during vanadium extraction by calcification[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 1-9. doi: 10.7513/j.issn.1004-7638.2023.04.001
Citation: Liu Xi, Pu Yuwen, Xu Zongyuan, Tang Kang, Zheng Guocan, Chen Yan, Liu Zuohua, Du Jun, Peng Yi, Tao Changyuan. Study on migration and transformation behavior of elements during vanadium extraction by calcification[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 1-9. doi: 10.7513/j.issn.1004-7638.2023.04.001

钙化提钒过程中元素迁移转化行为的研究

doi: 10.7513/j.issn.1004-7638.2023.04.001
详细信息
    作者简介:

    刘羲,1997年出生,女,重庆石柱人,硕士研究生,主要研究方向为资源及绿色化学,E-mail:1039784419@qq.com

  • 中图分类号: TF841.3

Study on migration and transformation behavior of elements during vanadium extraction by calcification

  • 摘要: 试验结合XRD、XPS、SEM-EDS和ICP-OES等分析手段,研究了不同pH值条件下酸性铵盐沉钒产物的物相组成及形貌,并分析了沉钒pH值等于2.20时V、Fe和Mn三种元素的迁移转化行为。结果表明,沉钒pH值显著影响产物的组成和形貌,较低pH值沉钒滤饼为无定形结构,随着pH值的升高,晶型逐渐确定。V在提钒尾渣中以CaV2O6形式存在,在滤饼中以多聚钒酸根形式存在,终产品中则以V2O5的形式存在;Fe在尾渣中的主要存在形式为Fe2O3和Fe2TiO5,在沉钒滤饼和终产品中含量较少;Mn在尾渣中以MnSO4形式存在,沉钒过程中主要进入到上清液中,滤饼中则以MnV2O6·4H2O形式存在,终产品中有0.210%。
  • 图  1  钙化焙烧熟料的XRD谱

    Figure  1.  XRD pattern of calcified roasted clinker

    图  2  沉钒试验流程

    Figure  2.  Flow chart of vanadium precipitation process

    图  3  沉钒pH对沉钒率和钒损率的影响

    Figure  3.  Effect of pH on vanadium precipitation ratio and vanadium loss ratio

    图  4  不同pH条件下沉钒滤饼的XRD谱

    Figure  4.  XRD patterns of vanadium filter cake under different pH conditions

    图  5  不同pH条件下终产品的XRD谱

    Figure  5.  XRD patterns of the final product under different pH conditions

    图  6  不同pH条件下的沉钒滤饼

    Figure  6.  Optical photos of different vanadium precipitation filter cakes under different pH conditions

    图  7  不同pH条件下沉钒滤饼的SEM形貌

    Figure  7.  SEM images of different vanadium filter cakes sinking under different pH conditions

    (a) pH = 0.70; (b) pH = 1.06; (c) pH = 1.40; (d) pH = 1.82; (e) pH = 2.04; (f) pH = 2.20

    图  8  不同pH条件下的V2O5

    Figure  8.  Optical photos of different V2O5 samples under different pH conditions

    图  9  不同pH条件下V2O5 SEM形貌

    Figure  9.  SEM images of different V2O5 samples prepared under different pH conditions

    (a) pH = 0.70; (b) pH = 1.06; (c) pH = 1.40; (d) pH = 1.82; (e) pH = 2.04; (f) pH = 2.20

    图  10  产物XRD谱

    Figure  10.  XRD patterns

    图  11  V2O5的XRD谱

    Figure  11.  XRD pattern of V2O5

    图  12  钙化酸浸尾渣的SEM-EDS形貌

    Figure  12.  SEM-EDS image of calcified acid leaching tailing

    图  13  pH = 2.20沉钒条件下得到的沉钒滤饼的SEM-EDS形貌

    Figure  13.  SEM-EDS images of the vanadium precipitation filter cake obtained at pH 2.20

    图  14  pH = 2.20沉钒条件下得到的V2O5的SEM-EDS形貌

    Figure  14.  SEM-EDS images of V2O5 obtained at pH 2.20

    图  15  XPS谱 (a) Survey; (b) V 2p谱; (c) Fe 2p谱; (d) Mn 2p谱

    Figure  15.  XPS patterns of (a) Survey, (b) V 2p, (c) Fe 2p, and (d) Mn 2p regions

    表  1  钙化焙烧熟料XRF成分分析

    Table  1.   XRF component analysis of calcified roasted clinker %

    OFeSiTiVMnCrAlMgCaNaP
    34.8330.924.035.908.477.351.040.7990.5555.360.1680.045
    下载: 导出CSV

    表  2  钙化酸浸液的主要成分

    Table  2.   Main composition of calcified acid leaching solution g/L

    VMnCaAlFeMgCrTi
    30.313.60.990.2510.04170.8090.01340.0340
    下载: 导出CSV

    表  3  沉钒上清液的主要成分

    Table  3.   Main compositions of vanadium precipitation supernatant

    pH含量/(g·L−1)
    VMnCaAlFeMgCrTi
    0.707.7312.81.010.04040.04350.7720.009470.00887
    1.064.6813.21.350.08550.06100.7970.01710.00704
    1.403.1517.51.030.05940.04600.9990.01390.00577
    1.821.7715.50.8430.05060.02330.9090.009420.00456
    2.040.61919.50.9500.09860.01861.140.005250.00367
    2.200.43221.30.8150.08650.02381.220.006430.00416
    下载: 导出CSV

    表  4  XRF氧化物含量分析

    Table  4.   XRF oxide content analysis %

    试样V2O5Fe2O3MnOSO3SiO2CaOTiO2Al2O3MgONa2OP2O5K2OCr2O3
    CALT5.8147.986.578.908.357.2410.781.520.5940.2090.1240.06421.61
    PVFC98.360.09790.2740.2530.01180.2110.07710.02030.1270.08930.03190.0075
    V2O598.490.09470.2710.2010.01150.1980.08010.02010.1180.09180.03570.0074
    注:CALT:钙化酸浸尾渣;PVFC:沉钒滤饼。
    下载: 导出CSV

    表  5  XRF元素含量分析

    Table  5.   XRF element content analysis %

    试样VFeMnTiSSiKCaOAlMgNaPCr
    CALT3.2533.555.086.463.563.900.05335.1836.270.8050.3580.1550.05401.10
    PVFC55.090.06850.2120.04620.1010.00550.00620.15143.790.01080.07650.06630.0139
    V2O555.170.06620.2100.04800.08060.00540.00610.14143.800.01060.07140.06810.0156
    下载: 导出CSV
  • [1] Anjass Montaha H, Kastner Katharina, Naegele Florian, et al. Stabilization of low-valent iron(I) in a high-valent vanadium(V) oxide cluster[J]. Angewandte Chemie-International Edition, 2017,56(46):14749−14752. doi: 10.1002/anie.201706828
    [2] Cha Woojoon, Chin Sungmin, Park Eunseuk, et al. Photocatalytic performance of V2O5/TiO2 materials prepared by chemical vapor condensation and impregnation method under visible-light[J]. Powder Technology, 2014,258:352−357. doi: 10.1016/j.powtec.2014.03.012
    [3] Gao Feng, Olayiwola Afolabi Uthmon, Liu Biao, et al. Review of vanadium production part I: Primary resources[J]. Mineral Processing and Extractive Metallurgy Review, 2021,43(4):466−488.
    [4] He Zhangxing, Li Manman, Li Yuehua, et al. Electrospun nitrogen-doped carbon nanofiber as negative electrode for vanadium redox flow battery[J]. Applied Surface Science, 2019,469:423−430. doi: 10.1016/j.apsusc.2018.10.220
    [5] Chen Desheng, Zhao Hongxin, Hu Guoping, et al. An extraction process to recover vanadium from low-grade vanadium-bearing titanomagnetite[J]. Journal of Hazardous Materials, 2015,294:35−40. doi: 10.1016/j.jhazmat.2015.03.054
    [6] Gilligan Rorie, Nikoloski Aleksandar N. The extraction of vanadium from titanomagnetites and other sources[J]. Minerals Engineering, 2020,146:18.
    [7] Dong Yingbo, Liu Yue, Lin Hai, et al. Improving vanadium extraction from stone coal via combination of blank roasting and bioleaching by ARTP-mutated Bacillus mucilaginosus[J]. Transactions of Nonferrous Metals Society of China, 2019,29(4):849−858. doi: 10.1016/S1003-6326(19)64995-2
    [8] Zhao Yunliang, Wang Wei, Zhang Yimin, et al. In-situ investigation on mineral phase transition during roasting of vanadium-bearing stone coal[J]. Advanced Powder Technology, 2017,28(3):1103−1107. doi: 10.1016/j.apt.2016.12.019
    [9] Ma Zhiyuan, Liu Yong, Zhou Jikui, et al. Recovery of vanadium and molybdenum from spent petrochemical catalyst by microwave-assisted leaching[J]. International Journal of Minerals, Metallurgy and Materials, 2019,26(1):33−40. doi: 10.1007/s12613-019-1707-y
    [10] Deng Rongrui, Xiao Hao, Xie Zhaoming, et al. A novel method for extracting vanadium by low temperature sodium roasting from converter vanadium slag[J]. Chinese Journal of Chemical Engineering, 2020,28(8):2208−2213. doi: 10.1016/j.cjche.2020.03.038
    [11] Li Hongyi, Fang Haixing, Wang Kang, et al. Asynchronous extraction of vanadium and chromium from vanadium slag by stepwise sodium roasting–water leaching[J]. Hydrometallurgy, 2015,156:124−135. doi: 10.1016/j.hydromet.2015.06.003
    [12] Wen Jing, Jiang Tao, Liu Yajing, et al. Extraction behavior of vanadium and chromium by calcification roasting-acid leaching from high chromium vanadium slag: Optimization using response surface methodology[J]. Mineral Processing and Extractive Metallurgy Review, 2018,40(1):56−66.
    [13] Peng Hao, Li Bing, Shi Wenbing, et al. Efficient recovery of vanadium from high-chromium vanadium slag with calcium-roasting acidic leaching[J]. Minerals, 2022,12(2):342.
    [14] Li Hongyi, Wang Chengjie, Yuan Yiheng, et al. Magnesiation roasting-acid leaching: A zero-discharge method for vanadium extraction from vanadium slag[J]. Journal of Cleaner Production, 2020,260:121091. doi: 10.1016/j.jclepro.2020.121091
    [15] Wen Jing, Jiang Tao, Wang Junpeng, et al. An efficient utilization of high chromium vanadium slag: Extraction of vanadium based on manganese carbonate roasting and detoxification processing of chromium-containing tailings[J]. Journal of Hazardous Materials, 2019,378:120733. doi: 10.1016/j.jhazmat.2019.06.010
    [16] Xiang Junyi, Huang Qingyun, Lv Xuewei, et al. Effect of mechanical activation treatment on the recovery of vanadium from converter slag[J]. Metallurgical and Materials Transactions B, 2017,48(5):2759−2767. doi: 10.1007/s11663-017-1033-6
    [17] Wu Zhenxiu, Jiang Lin. Study on vanadium precipitation by hydrolysis of chromium-vanadium solution[J]. Iron Steel Vanadium Titamium, 2020,41(5):22−26. (伍珍秀, 蒋霖. 钒铬溶液水解沉钒试验研究[J]. 钢铁钒钛, 2020,41(5):22−26. doi: 10.7513/j.issn.1004-7638.2020.05.004

    Wu Zhenxiu, Jiang Lin. Study on vanadium precipitation by hydrolysis of chromium-vanadium solution [J]. Iron Steel Vanadium Titamium, 2020, 41(5): 22-26. doi: 10.7513/j.issn.1004-7638.2020.05.004
    [18] Li He, Liu Xuheng, He Lihua. Thermodynamic study on vanadium precipitation with calcium salt[J]. Rare Metals and Cemented Carbides, 2014,42(1):15−19. (李贺, 刘旭恒, 何利华. 钙盐沉钒的热力学研究[J]. 稀有金属与硬质合金, 2014,42(1):15−19.

    Li He, Liu Xuheng, He Lihua. Thermodynamic study on vanadium precipitation with calcium salt [J]. Rare Metals and Cemented Carbides, 2014, 42(1): 15-19.
    [19] Li Dabiao. Experiment of acidic precipitation of vanadate-leaching solution[J]. Journal of Process Engineering, 2003,3(1):53−56. (李大标. 酸性铵盐沉钒条件实验研究[J]. 过程工程学报, 2003,3(1):53−56.

    Li Dabiao. Experiment of acidic precipitation of vanadate-leaching solution [J]. Journal of Process Engineering, 2003, 3(1): 53-56.
    [20] Ma Lei, Zhang Yiming, Liu Tao, et al. Enhancing effect of precipitating vanadium in acid ammonium salt[J]. Rare Metals, 2009,33(6):936−939. (马蕾, 张一敏, 刘涛, 等. 提高酸性铵盐沉钒效果的研究[J]. 稀有金属, 2009,33(6):936−939.

    Ma Lei, Zhang Yiming, Liu Tao, et al. Enhancing effect of precipitating vanadium in acid ammonium salt [J]. Rare Metals, 2009, 33(6): 936-939.
    [21] Zhan Lianlian, Zhang Yang, Zheng Shili, et al. Crystallization kinetics of ammonium polyvanadate[J]. Journal of Crystal Growth, 2019,526:125218. doi: 10.1016/j.jcrysgro.2019.125218
    [22] Zhang Juhua, Liang Yue, Zhang Wei, et al. Recovery of manganese from the mother liquor after vanadium precipitation during vanadium extraction with calcified roasting and acid leaching process[J]. Journal of Process Engineering, 2020,20(10):1174−1181. (张菊花, 梁月, 张伟, 等. 钙化-酸浸提钒沉钒母液中锰的回收[J]. 过程工程学报, 2020,20(10):1174−1181.

    Zhang Juhua, Liang Yue, Zhang Wei, et al. Recovery of manganese from the mother liquor after vanadium precipitation during vanadium extraction with calcified roasting and acid leaching process [J]. Journal of Process Engineering, 2020, 20(10): 1174-1181.
    [23] Chen Liang. Effects of pH and temperature on acidic ammonium salt precipitation of vanadate leaching solution[J]. Rare Metals, 2010,34(6):924−929. (陈亮. pH值和温度对酸性铵盐沉钒影响研究[J]. 稀有金属, 2010,34(6):924−929.

    Chen Liang. Effects of pH and temperature on acidic ammonium salt precipitation of vanadate leaching solution [J]. Rare Metals, 2010, 34(6): 924-929.
    [24] Wang Yanrong, Li Dabiao, Zhang Hong, et al. Discussion on the main factors affecting vanadium precipitation by acidic ammonium salt and its countermeasures[J]. Ferroalloy, 2012,43(4):12−16. (王艳戎, 李大标, 张宏, 等. 影响酸性铵盐沉钒主要因素及对策探讨[J]. 铁合金, 2012,43(4):12−16.

    Wang Yanrong, Li Dabiao, Zhang Hong, et al. Discussion on the main factors affecting vanadium precipitation by acidic ammonium salt and its countermeasures [J]. Ferroalloy, 2012, 43(4): 12-16.
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  28
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-03
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回