留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高钛型高炉渣中Ca、Mg、Al元素浸出特性研究

皇甫林 姜洋 邱正秋 王奎

皇甫林, 姜洋, 邱正秋, 王奎. 高钛型高炉渣中Ca、Mg、Al元素浸出特性研究[J]. 钢铁钒钛, 2023, 44(4): 18-24. doi: 10.7513/j.issn.1004-7638.2023.04.003
引用本文: 皇甫林, 姜洋, 邱正秋, 王奎. 高钛型高炉渣中Ca、Mg、Al元素浸出特性研究[J]. 钢铁钒钛, 2023, 44(4): 18-24. doi: 10.7513/j.issn.1004-7638.2023.04.003
Huangfu Lin, Jiang Yang, Qiu Zhengqiu, Wang Kui. Research on the leaching characteristics of Ca, Mg, Al elements in high titanium blast furnace slag[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 18-24. doi: 10.7513/j.issn.1004-7638.2023.04.003
Citation: Huangfu Lin, Jiang Yang, Qiu Zhengqiu, Wang Kui. Research on the leaching characteristics of Ca, Mg, Al elements in high titanium blast furnace slag[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 18-24. doi: 10.7513/j.issn.1004-7638.2023.04.003

高钛型高炉渣中Ca、Mg、Al元素浸出特性研究

doi: 10.7513/j.issn.1004-7638.2023.04.003
详细信息
    作者简介:

    皇甫林,1992年出生,男,四川泸州人,博士,工程师,研究方向为固废资源化利用,E-mail:l_huangfu@163.com

  • 中图分类号: X757,TD989

Research on the leaching characteristics of Ca, Mg, Al elements in high titanium blast furnace slag

  • 摘要: 为了充分利用高钛型高炉渣中的价值元素,通过对其理化性质进行分析,提出采用盐酸水热浸出的方式分离出高钛型高炉渣中Ca、Mg元素,重点考察了反应条件参数对高钛型高炉渣中元素浸出特性的影响。试验结果显示,随着盐酸浓度、盐酸量、反应温度和反应时间的增加,高钛型高炉渣中Ca、Mg、Al元素浸出率均呈上升趋势。其中,Mg、Al元素浸出率在高于95%后基本保持稳定,而Ca元素浸出率最高可接近100%。在盐酸浓度为4 mol/L、盐酸量为理论计算可完全溶解高钛型高炉渣中Ca、Mg、Al元素的1.5倍、反应温度为150 ℃、反应时间为10 h的条件下,可使高钛型高炉渣中Ca、Mg元素完全解离,浸出残渣中MgO、CaO含量均在1%以下,而TiO2、SiO2、Al2O3总含量则高于95%,可满足制备多孔吸附材料的要求。该研究成果有望为高钛型高炉渣的资源化高效利用提供数据支撑。
  • 图  1  高钛型高炉渣的XRD谱(a)和SEM形貌(b)

    Figure  1.  XRD pattern (a) and SEM image (b) of high titanium blast furnace slag

    图  2  高钛型高炉渣中各元素浸出率随盐酸浓度的变化

    Figure  2.  Variations in leaching efficiency of Ca, Mg, Al elements under different hydrochloric acid concentrations

    图  3  不同盐酸浓度时高钛型高炉渣中Ca、Mg、Al元素浸出率随盐酸量的变化

    Figure  3.  Variations in leaching efficiency of Ca, Mg and Al elements under different hydrochloric acid amounts with different hydrochloric acid concentrations

    图  4  高钛型高炉渣中Ca、Mg、Al元素浸出率随反应温度的变化

    Figure  4.  Variations in leaching efficiency of Ca, Mg and Al elements under different reaction temperatures

    图  5  高钛型高炉渣中Ca、Mg、Al元素浸出率随反应时间的变化

    Figure  5.  Variations in leaching efficiency of Ca, Mg and Al elements under different reaction time

    表  1  高钛型高炉渣的主要化学组成

    Table  1.   Main chemical composition of high titanium blast furnace slag %

    MgOAl2O3SiO2SO3K2OCaOTiO2MnOFe2O3
    8.4413.4922.841.550.7128.3620.460.801.74
    下载: 导出CSV
  • [1] Gao Yang, Gui Yongliang, Song Chunyan, et al. Current situation and prospect of comprehensive utilization of high titanium blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2019,(1):6−10. (高洋, 贵永亮, 宋春燕, 等. 高钛高炉渣综合利用现状及展望[J]. 矿产综合利用, 2019,(1):6−10.

    Gao Yang, Gui Yongliang, Song Chunyan, et al. Current situation and prospect of comprehensive utilization of high titanium blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2019 (1): 6-10.
    [2] Cai Yongfeng, Song Ningning, Yang Yunfei, et al. Recent progress of efficient utilization of titanium-bearing blast furnace slag[J]. International Journal of Minerals Metallurgy and Materials, 2022,29(1):22−31. doi: 10.1007/s12613-021-2323-1
    [3] Li Xinghua, Pu Jiangtao. The latest developments of integrated utilization on Panzhihua high titanium-bearing BF slag[J]. Iron Steel Vanadium Titanium, 2011,32(2):10−14. (李兴华, 蒲江涛. 攀枝花高钛型高炉渣综合利用研究最新进展[J]. 钢铁钒钛, 2011,32(2):10−14. doi: 10.7513/j.issn.1004-7638.2011.02.003

    Li Xinghua, Pu Jiangtao. The latest developments of integrated utilization on Panzhihua high titanium-bearing BF slag[J]. Iron Steel Vanadium Titanium, 2011, 32(2): 10-14. doi: 10.7513/j.issn.1004-7638.2011.02.003
    [4] Xu Renze, Zhang Jianliang, Chang Zhiyu, et al. Research progress of selective enrichment and precipitation of titanium in high titanium blast furnace slag[J]. Iron Steel Vanadium Titanium, 2017,38(6):6−12. (许仁泽, 张建良, 常治宇, 等. 高钛型高炉渣中钛组分选择性富集与析出研究进展[J]. 钢铁钒钛, 2017,38(6):6−12.

    Xu Renze, Zhang Jianliang, Chang Zhiyu, et al. Research progress of selective enrichment and precipitation of titanium in high titanium blast furnace slag[J]. Iron Steel Vanadium Titanium, 2017, 38(6): 6-12. )
    [5] Shi Junjie, Qiu Yuchao, Yu Bin, et al. Titanium extraction from titania-bearing blast furnace slag: A review[J]. JOM, 2022,74(2):654−667. doi: 10.1007/s11837-021-05040-y
    [6] Deng Yong, Zhen Changliang, Li Junguo, et al. Titanium enrichment process of titanium bearing blast furnace slag and utilization of titanium resources[J]. China Metallurgy, 2022,32(8):25−31. (邓勇, 甄常亮, 李俊国, 等. 含钛高炉渣钛富集工艺及钛资源利用[J]. 中国冶金, 2022,32(8):25−31.

    Deng Yong, Zhen Changliang, Li Junguo, et al. Titanium enrichment process of titanium bearing blast furnace slag and utilization of titanium resources[J]. China Metallurgy, 2022, 32(8): 25-31.
    [7] Li Youqi, Ke Changming, Gan Lin, et al. Development and application of refining desulfurizing agent based on Panzhihua Iron and Steel Co. blast furnace slag extracted titanium[J]. Iron Steel Vanadium Titanium, 2008,29(4):26−31. (李有奇, 柯昌明, 甘霖, 等. 基于攀钢含钛高炉渣提钛尾渣的精炼脱硫剂研究[J]. 钢铁钒钛, 2008,29(4):26−31.

    Li Youqi, Ke Changming, Gan Lin, et al. Development and application of refining desulfurizing agent based on Panzhihua Iron and Steel Co. blast furnace slag extracted titanium[J]. Iron Steel Vanadium Titanium, 2008, 29(4): 26-31.
    [8] Wang Peng, Han Bingqiang, Ke Changming, et al. Study on the performance of corundum castables binded by high titanium blast furnace after extracting titanium[J]. Iron Steel Vanadium Titanium, 2016,37(4):76−82. (汪朋, 韩兵强, 柯昌明, 等. 以高钛型高炉渣提钛后尾渣为结合剂的刚玉浇注料性能研究[J]. 钢铁钒钛, 2016,37(4):76−82.

    Wang Peng, Han Bingqiang, Ke Changming, et al. Study on the performance of corundum castables binded by high titanium blast furnace after extracting titanium[J]. Iron Steel Vanadium Titanium, 2016, 37(4): 76-82.
    [9] Chu Guanrun, Wang Lin, Liu Weizao, et al. Indirect mineral carbonation of chlorinated tailing derived from Ti-bearing blast-furnace slag coupled with simultaneous dechlorination and recovery of multiple value-added products[J]. Greenhouse Gases-Science and Technology, 2019,9(1):52−66. doi: 10.1002/ghg.1832
    [10] Wang Huaibin, Fan Fuzhong, Hao Jianzhang, et al. Action mechanism of high titanium BF slag in concrete[J]. Iron Steel Vanadium Titanium, 2004,25(3):48−53. (王怀斌, 范付忠, 郝建璋, 等. 高钛高炉渣在混凝土中的作用机理[J]. 钢铁钒钛, 2004,25(3):48−53.

    Wang Huaibin, Fan Fuzhong, Hao Jianzhang, et al. Action mechanismof high titaniumbf slag in concrete[J]. Iron Steel Vanadium Titanium, 2004, 25 (3): 48-53.
    [11] Zhou Chunli. Experimental study on high-titanium blast furnace slag heat-resistant concrete[J]. Bulletin of the Chinese Ceramic Society, 2018,37(10):3119−3123. (周春利. 高钛型高炉渣耐热混凝土试验研究[J]. 硅酸盐通报, 2018,37(10):3119−3123.

    Zhou Chunli. Experimental study on high-titanium blast furnace slag heat-resistant concrete[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(10): 3119-3123.
    [12] Ao Jinqing, Hao Jianzhang, Wang Huaibin, et al. Development of slag brick with high content of Ti-bearing slag[J]. Iron Steel Vanadium Titanium, 2007,28(2):57−62. (敖进清, 郝建璋, 王怀斌, 等. 大掺量高钛型高炉渣实心砖的研制[J]. 钢铁钒钛, 2007,28(2):57−62.

    Ao Jinqing, Hao Jianzhang, Wang Huaibin, et al. Development of slag brick with high content of Ti-bearing slag[J]. Iron Steel Vanadium Titanium, 2007, 28(2): 57-62.
    [13] Tian Jian, Feng Keqin, Yan Zidi, et al. Comparative study on preparation of foam glass-ceramics from slow-cooling and water-quenched high titanium blast furnace slag[J]. Iron Steel Vanadium Titanium, 2020,41(5):96−101. (田坚, 冯可芹, 严子迪, 等. 缓冷与水淬高钛型高炉渣制备微晶泡沫玻璃的对比研究[J]. 钢铁钒钛, 2020,41(5):96−101.

    Tian Jian, Feng Keqin, Yan Zidi, et al. Comparative study on preparation of foam glass-ceramics from slow-cooling and water-quenched high titanium blast furnace slag[J]. Iron Steel Vanadium Titanium, 2020, 41(5): 96-101.
    [14] Li Jiahao, Liang Zongyu, Yang He, et al. Foamed ceramics prepared by titanium-bearing blast furnace slag with borax as flux agent[J]. Bulletin of the Chinese Ceramic Society, 2021,40(12):4077−4083. (李嘉昊, 梁宗宇, 杨合, 等. 以硼砂为助熔剂使用含钛高炉渣制备发泡陶瓷[J]. 硅酸盐通报, 2021,40(12):4077−4083.

    Li Jiahao, Liang Zongyu, Yang He, et al. Foamed ceramics prepared by titanium-bearing blast furnace slag with borax as flux agent[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(12): 4077-4083.
    [15] Huo Hongying, Zou Min. Preparation and performance optimization of Co-doped high-titanium blast furnace slag as photocatalytic material[J]. Iron Steel Vanadium Titanium, 2021,42(1):65−69. (霍红英, 邹敏. 钴掺杂高钛型高炉渣光催化材料制备及性能优化[J]. 钢铁钒钛, 2021,42(1):65−69. doi: 10.7513/j.issn.1004-7638.2021.01.011

    Huo Hongying, Zou Min. Preparation and performance optimization of Co-doped high-titanium blast furnace slag as photocatalytic material[J]. Iron Steel Vanadium Titanium, 2021, 42(1): 65-69. doi: 10.7513/j.issn.1004-7638.2021.01.011
    [16] Wang Kun, Zhu Liyun, Li Peng, et al. Preparation of CaTiO3-porous geopolymer photodegradation adsorbent from Ti-bearing blast furnace slag[J]. China Metallurgy, 2022,32(4):113−120. (王琨, 朱丽云, 李鹏, 等. 含钛高炉渣制备CaTiO3-多孔地质聚合物光降解吸附材料[J]. 中国冶金, 2022,32(4):113−120.

    Wang Kun, Zhu Liyun, Li Peng, et al. Preparation of CaTiO3-porous geopolymer photodegradation adsorbent from Ti-bearing blast furnace slag[J]. China Metallurgy, 2022, 32(4): 113-120.
    [17] Lei Shan, Yang Juan, Yu Jian, et al. SCR denitration catalyst prepared from titanium-bearing blast furnace slag[J]. CIESC Journal, 2014,65(4):1251−1259. (雷珊, 杨娟, 余剑, 等. 含钛高炉渣制备SCR烟气脱硝催化剂[J]. 化工学报, 2014,65(4):1251−1259.

    Lei Shan, Yang Juan, Yu Jian, et al. SCR denitration catalyst prepared from titanium-bearing blast furnace slag[J]. CIESC Journal, 2014, 65(4): 1251-1259.
    [18] Tran Tuyetsuong, Yu Jian, Gan Lina, et al. Upgrading V2O5-WO3/TiO2 deNOx catalyst with TiO2-SiO2 support prepared from ti-bearing blast furnace slag[J]. Catalysts, 2016,6(4):14.
    [19] Tran Tuyetsuong, Yu Jian, Li Changming, et al. Structure and performance of a V2O5-WO3/TiO2-SiO2 catalyst derived from blast furnace slag (BFS) for DeNOx[J]. RSC Advances, 2017,7(29):18108−18119. doi: 10.1039/C7RA01252G
    [20] 皇甫林, 邱正秋, 王奎, 等. 一种含钛高炉渣改性制备CO2捕集材料耦合矿化的方法: 中国, CN115582105A[P]. 2023-01-10.

    Huangfu Lin, Qiu Zhengqiu, Wang Kui, et al. A method for preparing CO2 capture material coupling mineralization by modification of titanium-bearing blast furnace slag: China, CN115582105A[P]. 2023-01-10.
    [21] Wang Weiqing, Zhu Yangge, Zhang Shiqiu, et al. Flotation behaviors of perovskite, titanaugite, and magnesium aluminate spinel using octyl hydroxamic acid as the collector[J]. Minerals, 2017,7(8):18.
    [22] Yang Zhuoying, Yang Fan, Yi Meigui, et al. Estimation of reaction heat in ti-bearing blast furnace slag-sulfuric acid system based on mechanical mixture model[J]. Mining Metallurgy & Exploration, 2021,38(2):1247−1252.
    [23] Zhang Xiaoyun, Qin Hongyan, Zhang Sisi, et al. Titanium-incorporated organic-inorganic hybrid adsorbent for improved CO2 adsorption performance[J]. Materials Research Bulletin, 2015,62:200−205. doi: 10.1016/j.materresbull.2014.11.037
    [24] Zhang Hong, Yuan Hong, Ma Xiuhua. Progress in synthesis and application of Ti-Si ordered mesoporous molecular sieves[J]. Applied Chemical Industry, 2018,47(12):2781−2785. (张泓, 袁红, 马秀花. 钛硅有序介孔分子筛合成及应用研究进展[J]. 应用化工, 2018,47(12):2781−2785.

    Zhang Hong, Yuan Hong, Ma Xiuhua. Progress in synthesis and application of Ti-Si ordered mesoporous molecular sieves[J]. Applied Chemical Industry, 2018, 47(12): 2781-2785.
    [25] 陈旭东. 粉煤灰制备硅基分子筛的合成优化及其CO2吸附性能研究[D]. 沈阳: 东北大学, 2019.

    Chen Xudong. Synthesis optimization of silica-based molecular sieves prepared from fly ash and their CO2 adsorption properties[D]. Shenyang: Northeastern University, 2019.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  25
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-12
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回