留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

葡萄糖添加量对溶胶凝胶燃烧法制备Li3V2(PO4)3/C正极材料储锂性能的影响

李娜丽 张仁杰

李娜丽, 张仁杰. 葡萄糖添加量对溶胶凝胶燃烧法制备Li3V2(PO4)3/C正极材料储锂性能的影响[J]. 钢铁钒钛, 2023, 44(4): 41-47. doi: 10.7513/j.issn.1004-7638.2023.04.006
引用本文: 李娜丽, 张仁杰. 葡萄糖添加量对溶胶凝胶燃烧法制备Li3V2(PO4)3/C正极材料储锂性能的影响[J]. 钢铁钒钛, 2023, 44(4): 41-47. doi: 10.7513/j.issn.1004-7638.2023.04.006
Li Nali, Zhang Renjie. Effect of glucose content on the lithium storage performance of Li3V2(PO4)3/C cathode materials prepared by sol-gel combustion method[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 41-47. doi: 10.7513/j.issn.1004-7638.2023.04.006
Citation: Li Nali, Zhang Renjie. Effect of glucose content on the lithium storage performance of Li3V2(PO4)3/C cathode materials prepared by sol-gel combustion method[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 41-47. doi: 10.7513/j.issn.1004-7638.2023.04.006

葡萄糖添加量对溶胶凝胶燃烧法制备Li3V2(PO4)3/C正极材料储锂性能的影响

doi: 10.7513/j.issn.1004-7638.2023.04.006
基金项目: 绿色催化四川省高校重点实验室开放基金项目(LYJ2006);攀枝花学院校级科研项目(2020YB021);攀枝花学院校级大学生创新创业训练计划项目(2022cxcy049)。
详细信息
    作者简介:

    李娜丽,1985年出生,女,福建泉州人,博士,副教授,主要研究方向为新能源材料,E-mail:nalili0630@163.com

  • 中图分类号: TF841.3,TM912

Effect of glucose content on the lithium storage performance of Li3V2(PO4)3/C cathode materials prepared by sol-gel combustion method

  • 摘要: 通过改变葡萄糖添加量,采用改进的溶胶凝胶燃烧法成功制备出不同碳含量的亚微多孔Li3V2(PO4)3(LVP)/C复合材料。系统研究了葡萄糖添加量对LVP的结构、形貌及电化学性能的影响。添加葡萄糖虽然没有改变LVP的晶型结构和晶格参数,但是添加了葡萄糖的样品中出现了有利于电子传输和Li+扩散的纳米针状颗粒,且随着葡萄糖添加量的增加,纳米针状颗粒的体积分数增加,从而提高了LVP/C正极材料的倍率性能。葡萄糖碳化生成的无定形碳均匀包覆在LVP颗粒的表面,提高了复合材料的电导率,电导率随着葡萄糖添加量的增加而增加,但是葡萄糖添加量过多会导致碳包覆层过厚,不利于Li+的传输。得益于适当的葡萄糖添加量以及纳米针状颗粒和多孔结构,LVP/C-G15%样品具有优异的储锂性能,其在10 C的高倍率下循环200次后仍可提供75.1 mAh/g的放电比容量,容量保持率高达89.0%。
  • 图  1  LVP/C-Gx (x = 0, 5%, 10%, 15%和20%)复合材料的XRD图谱

    Figure  1.  XRD diffraction patterns of LVP/C-Gx (x = 0, 5%, 10%, 15% and 20%) composites

    图  2  不同葡萄糖添加量样品的SEM形貌

    Figure  2.  SEM images of samples with different glucose additions

    (a) LVP/C-G0;(b) LVP/C-G10%;(c) LVP/C-G15%;(d) LVP/C-G20%

    图  3  LVP/C-G15%复合材料的HRTEM形貌

    Figure  3.  HRTEM image of LVP/C-G15% composite

    图  4  LVP/C-Gx (x = 0, 10%, 15%和20%)样品的(a)恒电流充放电曲线;(b)倍率性能曲线;(c)LVP/C-G15%样品在10 C倍率下的循环性能曲线

    Figure  4.  (a) Galvanostatic charge-discharge curves, (b) Rate performance curves of LVP/C-Gx (x = 0, 10%, 15% and 20%) samples, (c) Long-term cycling performance curves of LVP/C-G15% sample at 10 C

    图  5  LVP/C-Gx (x = 0, 10%, 15%和20%)复合材料的(a)EIS图谱和(b)低频区中Z'ω−1/2的线性拟合曲线

    Figure  5.  (a) EIS spectra and (b) linear fitting curves of Z' vs. ω−1/2 at low frequencies of LVP/C-Gx (x = 0, 10%, 15% and 20%) composites

    表  1  不同葡萄糖添加量的LVP/C样品的XRD-Rietveld精修晶体学参数

    Table  1.   Refined crystallographic parameters from XRD-Rietveld for LVP/C materials with different glucose additions

    样品a /nmb /nmc /nmΒ/ (°)V /nm3Rwp /%
    LVP/C-G00.86110.86051.20590.560.89306.94
    LVP/C-G5%0.86100.86011.20590.540.89257.06
    LVP/C-G10%0.86110.86021.20590.550.89266.89
    LVP/C-G15%0.86100.86041.20590.530.89286.68
    LVP/C-G20%0.86100.86031.20590.540.89266.53
    下载: 导出CSV

    表  2  通过等效电路对EIS数据进行拟合得到的LVP/C-Gx (x = 0, 10%, 15%和20%)电极的动力学参数

    Table  2.   The kinetic parameters of LVP/C-Gx (x = 0, 10%, 15% and 20%) electrodes obtained by fitting the EIS data through the equivalent circuit

    样品Rs /ΩRct /Ωσ /(Ω·s−1/2)
    LVP/C-G01.684498.1129.1
    LVP/C-G10%1.634371.179.11
    LVP/C-G15%1.254318.721.91
    LVP/C-G20%1.331271.046.05
    下载: 导出CSV
  • [1] Sun Chunwen, Rajasekhara Shreyas, Dong Youzhong, et al. Hydrothermal synthesis and electrochemical properties of Li3V2(PO4)3/C-based composites for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2011,3(9):3772−3776.
    [2] Membreño Nellymar, Park Kyusung, Goodenough John B, et al. Electrode/electrolyte interface of composite α-Li3V2(PO4)3 cathodes in a nonaqueous electrolyte for lithium ion batteries and the role of the carbon additive[J]. Chemistry of Materials, 2015,27(9):3332−3340. doi: 10.1021/acs.chemmater.5b00447
    [3] Membreño Nellymar, Xiao Penghao, Park Kyu Sung, et al. In situ Raman study of phase stability of α-Li3V2(PO4)3 upon thermal and laser heating[J]. The Journal of Physical Chemistry C, 2013,117(23):11994−12002. doi: 10.1021/jp403282a
    [4] Yin S C, Strobel P S, Grondey H, et al. Li2.5V2(PO4)3:   A room-temperature analogue to the fast-ion conducting high-temperature γ-phase of Li3V2(PO4)3[J]. Chemistry Of Materials, 2004,16(8):1456−1465. doi: 10.1021/cm034802f
    [5] Peng Yi, Tan Rou, Ma Jianmin, et al. Electrospun Li3V2(PO4)3 nanocubes/carbon nanofibers as free-standing cathodes for high-performance lithium-ion batteries[J]. Journal of Materials Chemistry A, 2019,7(24):14681−14688. doi: 10.1039/C9TA02740H
    [6] Tan Huiteng, Xu Lianhua, Geng Hongbo, et al. Nanostructured Li3V2(PO4)3 cathodes[J]. Small, 2018,14(21):1800567. doi: 10.1002/smll.201800567
    [7] Cui Kai, Hu Shuchun, Li Yongkui. Nitrogen-doped graphene nanosheets decorated Li3V2(PO4)3/C nanocrystals as high-rate and ultralong cycle-life cathode for lithium-ion batteries[J]. Electrochimica Acta, 2016,210:45−52. doi: 10.1016/j.electacta.2016.05.099
    [8] Mohanty Debabrata, Lu Zhenlun, Hung I Ming. Effect of carbon coating on electrochemical properties of Nitrogen-doped graphene cathode synthesized by citric-acid gel method for lithium-ion batteries[J]. Journal of Applied Electrochemistry, 2023,53(5):1003−1013. doi: 10.1007/s10800-022-01828-1
    [9] Chen Jian, Zhao Na, Guo Feifan. Impact of carbon coating thickness on the electrochemical properties of Li3V2(PO4)3/C composites[J]. Russian Journal of Electrochemistry, 2017,53(4):339−344. doi: 10.1134/S102319351704005X
    [10] Zhou Ji, Sun Xinyu, Wang Kai. Preparation of high-voltage Li3V2(PO4)3 co-coated by carbon and Li7La3Zr2O12 as a stable cathode for lithium-ion batteries[J]. Ceramics International, 2016,42(8):10228−10236. doi: 10.1016/j.ceramint.2016.03.144
    [11] Han Hui, Qiu Feng, Liu Zhentao, et al. ZrO2-coated Li3V2(PO4)3/C nanocomposite: A high-voltage cathode for rechargeable lithium-ion batteries with remarkable cycling performance[J]. Ceramics International, 2015,41(7):8779−8784. doi: 10.1016/j.ceramint.2015.03.103
    [12] Liao Yuxing, Li Chao, Lou Xiaobing, et al. Carbon-coated Li3V2(PO4)3 derived from metal-organic framework as cathode for lithium-ion batteries with high stability[J]. Electrochimica Acta, 2018,271:608−616. doi: 10.1016/j.electacta.2018.03.100
    [13] Chen Yueqian, Xiang Kaixiong, Zhu Yirong, et al. Porous, nitrogen-doped Li3V2(PO4)3/C cathode materials derived from oroxylum and their exceptional electrochemical properties in lithium-ion batteries[J]. Ceramics International, 2019,45(4):4980−4989. doi: 10.1016/j.ceramint.2018.11.198
    [14] Sun Hongxia, Du Haoran, Yu Mengkang, et al. Vesicular Li3V2(PO4)3/C hollow mesoporous microspheres as an efficient cathode material for lithium-ion batteries[J]. Nano Research, 2019,12(8):1937−1942. doi: 10.1007/s12274-019-2461-1
    [15] Lee Hwang Sheng, Ramar Vishwanathan, Kuppan Saravanan, et al. Key design considerations for synthesis of mesoporous α-Li3V2(PO4)3/C for high power lithium batteries[J]. Electrochimica Acta, 2021,372:137831. doi: 10.1016/j.electacta.2021.137831
    [16] Zhang Le, Xiang Hongfa, Li Zhong, et al. Porous Li3V2(PO4)3/C cathode with extremely high-rate capacity prepared by a sol-gel-combustion method for fast charging and discharging[J]. Journal of Power Sources, 2012,203:121−125. doi: 10.1016/j.jpowsour.2011.11.082
    [17] Ou Qingzhu, Tang Yan, Zhong Yanjun, et al. Submicrometer porous Li3V2(PO4)3/C composites with high rate electrochemical performance prepared by sol-gel combustion method[J]. Electrochimica Acta, 2014,137:489−496. doi: 10.1016/j.electacta.2014.04.178
    [18] Taddesse Paulos, Belete Birhanu. Substitutional effect on structural, electrical and electrochemical behaviors of LiMn1.977(Ce, Cu)0.023O4 nanoparticles prepared by sol-gel combustion method[J]. Chemical Physics, 2019,522:260−266. doi: 10.1016/j.chemphys.2019.03.015
    [19] Li Nali, Tong Yanwei, Yi Dawei, et al. Facile synthesis of Li3V2(PO4)3/C composite with a complex morphology and its excellent electrochemical performance as cathode material for lithium ion batteries[J]. Materials Research Express, 2019,6(11):115530. doi: 10.1088/2053-1591/ab49c1
    [20] Li Nali, Yu Yong, Tong Yanwei, et al. Sc3+-doping effects on porous Li3V2(PO4)3/C cathode with superior rate performance and cyclic stability[J]. Ceramics International, 2021,47(24):34218−34224. doi: 10.1016/j.ceramint.2021.08.331
    [21] Li Nali, Tong Yanwei, Yi Dawei, et al. Effect of Zr4+ doping on the morphological features and electrochemical performance of monoclinic Li3V2(PO4)3/C cathode material synthesized by an improved sol-gel combustion technique[J]. Journal of Alloys and Compounds, 2021,868:158771. doi: 10.1016/j.jallcom.2021.158771
    [22] Li Ruhong, Liu Jianchao, Chen Tianrui, et al. Systematic evaluation of lithium-excess polyanionic compounds as multi-electron reaction cathodes[J]. Nanoscale, 2019,11(36):16991−17003. doi: 10.1039/C9NR05751J
    [23] Yu Shicheng, Mertens Andreas, Kungl Hans, et al. Morphology dependency of Li3V2(PO4)3/C cathode material regarding to rate capability and cycle life in lithium-ion batteries[J]. Electrochimica Acta, 2017,232:310−322. doi: 10.1016/j.electacta.2017.02.136
    [24] Chen Lin, Yan Bo, Xu Jing, et al. Bicontinuous structure of Li3V2(PO4)3 clustered via carbon nanofiber as high-performance cathode material of Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2015,7(25):13934−13943.
    [25] Yu Shicheng, Mertens Andreas, Schierholz Roland, et al. An advanced all phosphate lithium-ion battery providing high electrochemical stability, high rate capability and long-term cycling performance[J]. Journal of the Electrochemical Society, 2017,164:A370−A379. doi: 10.1149/2.1151702jes
    [26] Xiong Fangyu, Tan Shuangshuang, Wei Qiulong, et al. Three-dimensional graphene frameworks wrapped Li3V2(PO4)3 with reversible topotactic sodium-ion storage[J]. Nano Energy, 2017,32:347−352. doi: 10.1016/j.nanoen.2016.12.050
    [27] Guo Shuainan, Bai Ying, Geng Zhenfeng, et al. Facile synthesis of Li3V2(PO4)3 cathode material for lithium-ion battery via freeze-drying[J]. Journal of Energy Chemistry, 2019,32:159−165. doi: 10.1016/j.jechem.2018.07.011
    [28] Rui Xianhong, Yan Qingyu, Skyllas Kazacos Maria, et al. Li3V2(PO4)3 cathode materials for lithium-ion batteries: A review[J]. Journal of Power Sources, 2014,258:19−38. doi: 10.1016/j.jpowsour.2014.01.126
    [29] Oh Woong, Park Hyunyoung, Jin Bong-Soo, et al. Understanding the structural phase transitions in lithium vanadium phosphate cathodes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2020,8(20):10331−10336. doi: 10.1039/C9TA12435G
    [30] Ruan Tingting, Lu Shengli, Lu Junyang, et al. Unraveling the intercalation chemistry of multi-electron reaction for polyanionic cathode Li3V2(PO4)3[J]. Energy Storage Materials, 2023,55:546−555. doi: 10.1016/j.ensm.2022.12.021
    [31] Bi Linnan, Song Zhicui, Liu Xiaoqin, et al. Critical roles of RuO2 nano-particles in enhancing cyclic and rate performance of Lisicon Li3V2(PO4)3 cathode materials[J]. Journal of Alloys and Compounds, 2020,845:156271. doi: 10.1016/j.jallcom.2020.156271
    [32] Zhang Shu, Gu Qin, Tan Shan, et al. Improved electrochemical properties of the Li3V2(PO4)3 cathode material synthesized from a V(III) precursor[J]. Journal of Alloys and Compounds, 2019,802:583−590. doi: 10.1016/j.jallcom.2019.06.240
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  17
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-19
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回