留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu夹层激光熔化沉积IN625/TC4双金属结构过渡区组织与性能的研究

王文博 徐诺 徐国建 井志成 张国瑜 赵雪 项卓

王文博, 徐诺, 徐国建, 井志成, 张国瑜, 赵雪, 项卓. Cu夹层激光熔化沉积IN625/TC4双金属结构过渡区组织与性能的研究[J]. 钢铁钒钛, 2023, 44(4): 48-54. doi: 10.7513/j.issn.1004-7638.2023.04.007
引用本文: 王文博, 徐诺, 徐国建, 井志成, 张国瑜, 赵雪, 项卓. Cu夹层激光熔化沉积IN625/TC4双金属结构过渡区组织与性能的研究[J]. 钢铁钒钛, 2023, 44(4): 48-54. doi: 10.7513/j.issn.1004-7638.2023.04.007
Wang Wenbo, Xu Nuo, Xu Guojian, Jing Zhicheng, Zhang Guoyu, Zhao Xue, Xiang Zhuo. Study on the microstructure and properties of the transition region of IN625/TC4 bimetallic structure by laser melting deposition with Cu interlayer[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 48-54. doi: 10.7513/j.issn.1004-7638.2023.04.007
Citation: Wang Wenbo, Xu Nuo, Xu Guojian, Jing Zhicheng, Zhang Guoyu, Zhao Xue, Xiang Zhuo. Study on the microstructure and properties of the transition region of IN625/TC4 bimetallic structure by laser melting deposition with Cu interlayer[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 48-54. doi: 10.7513/j.issn.1004-7638.2023.04.007

Cu夹层激光熔化沉积IN625/TC4双金属结构过渡区组织与性能的研究

doi: 10.7513/j.issn.1004-7638.2023.04.007
基金项目: 沈阳市科技计划项目(No.20-202-1-10);广东省重点研发计划项目(No. 2018B090905003)。
详细信息
    作者简介:

    王文博,1994年出生,男,汉族,辽宁营口人,博士研究生,主要从事激光熔化沉积钛合金与高温合金的研究,E-mail:593133532@qq.com

    通讯作者:

    徐国建,1959年出生,男,汉族,辽宁大连人,博士,教授,主要从事增材制造钛合金与高温合金等相关研究,E-mail:xuguojian@sut.edu.cn

  • 中图分类号: TF823,TG135

Study on the microstructure and properties of the transition region of IN625/TC4 bimetallic structure by laser melting deposition with Cu interlayer

  • 摘要: 由具有优异高温性能的IN625镍基高温合金和轻质高强度的TC4钛合金构成的双金属结构在航空航天领域中具有广阔的应用前景,然而,由于两种金属的物理化学性质差异较大,直接制造IN625/TC4双金属结构时,不可避免地在过渡区形成裂纹等冶金缺陷,因此IN625/TC4双金属结构的有效连接一直是行业研究的热点与难点。采用激光熔化沉积技术,通过添加Cu夹层制备了无裂纹等冶金缺陷的IN625/TC4双金属结构,研究了其过渡区的显微组织与力学性能。结果表明,Cu夹层激光熔化沉积IN625/TC4双金属结构过渡区内部的相组成主要为:γ-Ni、γ-Cu、(Cr, Mo)、Ti2Cu、TiCu、TiNi3、α-Ti及β-Ti;室温拉伸结果表明,添加Cu夹层的IN625/TC4双金属结构的抗拉强度约为228.9 MPa,断裂位置位于Cu/IN625过渡区附近,断口形貌表现为准解理断裂特性。
  • 图  1  Cu夹层的IN625/TC4双金属结构微观形貌

    Figure  1.  Microstructure of IN625/TC4 bimetallic structure using Cu interlayer

    图  2  双金属结构过渡区的XRD图谱

    (a)Cu/IN625过渡区;(b)TC4/Cu过渡区

    Figure  2.  XRD patterns of bimetallic structure

    图  3  Cu/IN625过渡区的典型微观组织

    (a)为Cu/IN625过渡区内部下方组织;(c)为Cu/IN625过渡区内部上方组织;(b)(d)分别为(a)(c)中方框处组织放大

    Figure  3.  Typical microstructure of Cu/IN625 transition region

    图  4  TC4/Cu过渡区的典型微观组织

    (a)为TC4/Cu过渡区内部下方组织;(c)为TC4/Cu过渡区内部上方组织;(b)(d)分别为(a)(c)中方框处组织放大

    Figure  4.  Typical microstructure of TC4/Cu transition region

    图  5  Cu夹层双金属结构室温拉伸试验

    (a)以Cu 为夹层的IN625/TC4双金属结构拉伸断口形貌;(b)为图5(a)中方色框内部的放大;(c)EDS点扫描;(d)试样拉伸性能

    Figure  5.  Room temperature tensile test of bimetallic structure using Cu interlayer

    表  1  主要工艺参数

    Table  1.   Mian process parameters

    材料激光功
    率/W
    扫描速度/
    (mm·min−1
    送粉速度/
    (g·min−1
    层厚/
    mm
    层数
    IN62518007208.40.644
    Cu21007208.90.61
    TC424007204.80.644
    下载: 导出CSV

    表  2  Cu/IN625过渡区EDS点扫描结果

    Table  2.   EDS scanning results at Cu/IN625 transition region %

    微区NiCrMoNbFeTiAlVCu物相
    147.681.750.060.330.8324.011.170.1024.07(Ni, Cu)ss
    27.7954.3220.210.260.996.743.252.114.33(Cr, Mo)
    321.23.031.020.770.5263.717.232.390.13TiNi3
    45.773.452.50.351.9740.234.231.6939.81TiCu
    538.651.290.180.490.185.433.562.3347.88(Ni, Cu)ss
    64.323.440.150.790.2156.45.080.3029.30Ti2Cu
    下载: 导出CSV

    表  3  TC4/Cu过渡区EDS点扫描结果

    Table  3.   EDS point scanning results at TC4/Cu transition region %

    微区NiCrMoNbFeTiAlVCu物相
    18.016.391.790.690.7365.028.132.836.41β-Ti
    22.270.830.110.050.1782.8110.731.201.83α-Ti
    39.892.810.070.081.2356.811.001.8826.23Ti2Cu
    44.931.900.200.060.6180.495.693.033.08β-Ti
    51.390.330.110.010.2285.0810.301.501.05α-Ti
    68.612.460.450.100.4176.345.791.953.89β-Ti
    下载: 导出CSV
  • [1] Pm A, Hy B, Abp A. Microstructure evolution of Inconel 625 alloy during single-track laser powder bed fusion[J]. Additive Manufacturing, 2022,55:102824. doi: 10.1016/j.addma.2022.102824
    [2] Chen Y, Xu M, Zhang T, et al. Grain refinement and mechanical properties improvement of Inconel 625 alloy fabricated by ultrasonic-assisted wire and arc additive manufacturing[J]. Journal of Alloys and Compounds, 2022,910:164957. doi: 10.1016/j.jallcom.2022.164957
    [3] Pang X, Xiong Z, Sun J, et al. Enhanced strength-ductility synergy in laser additive manufactured TC4 titanium alloy by grain refinement[J]. Materials Letters, 2022,326:132949. doi: 10.1016/j.matlet.2022.132949
    [4] Zhou X, Xu D, Geng S, et al. Mechanical properties, corrosion behavior and cytotoxicity of Ti-6Al-4V alloy fabricated by laser metal deposition[J]. Materials Characterization, 2021,179:111302. doi: 10.1016/j.matchar.2021.111302
    [5] Zhao H, Liu Z, Yu C, et al. Finite element analysis for residual stress of TC4/Inconel718 functionally gradient materials produced by laser additive manufacturing[J]. Optics & Laser Technology, 2022,152:108146.
    [6] Wu D, Song C, Di T, et al. Intermetallic regulation mechanism of inconel718/Ti6A14V composite by novel follow-up ultrasonic assisted laser additive manufacturing[J]. Composites, Part B. Engineering, 2022,15(235):109736.
    [7] Shang C, Wang C, Li C, et al. Eliminating the crack of laser 3D printed functionally graded material from TA15 to Inconel718 by base preheating[J]. Optics & Laser Technology, 2020,126:106100.
    [8] Xia Y, Lei J, Chen H. Effects of circular oscillating laser on microstructure and mechanical property of nickel-based superalloy by laser melting deposition[J]. Optics & Laser Technology, 2022,155:108361.
    [9] Hao Y, Huang Y, Zhao K, et al. Research on the microstructure and mechanical properties of doubled annealed laser melting deposition TC11 titanium alloy[J]. Optics & Laser Technology, 2022,150:107983.
    [10] Gao Z, Wang L, Lyu F, et al. Temperature variation and mass transport simulations of invar alloy during continuous-wave laser melting deposition[J]. Optics & Laser Technology, 2022,152:108163.
    [11] Gu D, Shi X, Poprawe R, et al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science, 2021,372(6545):1487. doi: 10.1126/science.abg1487
    [12] Benedetti M, Klarin J, Johansson F, et al. Study of the compression behaviour of Ti6Al4V trabecular structures produced by additive laser manufacturing[J]. Materials, 2019,12(9):1471. doi: 10.3390/ma12091471
    [13] Safronov V A, Gusarov A, Gusarov V, et al. Distortions and residual stresses at layer-by-layer additive manufacturing by fusion[J]. Journal of Manufacturing Science and Engineering:Transactions of the ASME, 2017,139(3):031017. doi: 10.1115/1.4034714
    [14] Liu Z, Lu S, Tang H, et al. Characterization and decompositional crystallography of the massive phase grains in an additively-manufactured Ti-6Al-4V alloy[J]. Materials Characterization, 2017,127:146−152. doi: 10.1016/j.matchar.2017.01.012
    [15] Onuike B, Heer B, Bandyopadhyay A. Additive manufacturing of Inconel 718-Copper alloy bimetallic structure using laser engineered net shaping (LENS)[J]. Additive Manufacturing, 2018,21:133−140. doi: 10.1016/j.addma.2018.02.007
    [16] Domack M S, Baughman J M. Development of nickel‐titanium graded composition components[J]. Emerald Group Publishing Limited, 2005,11:655−668.
    [17] Shang C, Xu G, Wang C, et al. Laser deposition manufacturing of bimetallic structure from TA15 to inconel 718 via copper interlayer[J]. Materials Letters, 2019,252(1):342−344.
    [18] Zoeram A S, Mousavi S. Effect of interlayer thickness on microstructure and mechanical properties of as welded Ti6Al4V/Cu/NiTi joints[J]. Materials Letters, 2014,133(15):5−8.
    [19] 王辰阳. 激光增材制造TC4/Inconel 718双金属结构过渡区组织性能的研究[D]. 沈阳, 沈阳工业大学, 2021.

    Wang Chenyang. Study on microstructures and mechanical properties of TC4-INconel718 bimetallic structure gradient transition zone prepared by laser melting deposition[D]. Shenyang: Shengyang University of Technology, 2021.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  35
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-21
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回