留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛合金VAR过程中自感电磁场对流场与偏析行为的影响

黄立清 吴京洋 郭杰 樊凯 李超 李志宏 李俊杰 王锦程

黄立清, 吴京洋, 郭杰, 樊凯, 李超, 李志宏, 李俊杰, 王锦程. 钛合金VAR过程中自感电磁场对流场与偏析行为的影响[J]. 钢铁钒钛, 2023, 44(4): 55-61. doi: 10.7513/j.issn.1004-7638.2023.04.008
引用本文: 黄立清, 吴京洋, 郭杰, 樊凯, 李超, 李志宏, 李俊杰, 王锦程. 钛合金VAR过程中自感电磁场对流场与偏析行为的影响[J]. 钢铁钒钛, 2023, 44(4): 55-61. doi: 10.7513/j.issn.1004-7638.2023.04.008
Huang Liqing, Wu Jingyang, Guo Jie, Fan Kai, Li Chao, Li Zhihong, Li Junjie, Wang Jincheng. Effect of self-induced magnetic field on liquid flow and segregation during VAR process for titanium alloys[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 55-61. doi: 10.7513/j.issn.1004-7638.2023.04.008
Citation: Huang Liqing, Wu Jingyang, Guo Jie, Fan Kai, Li Chao, Li Zhihong, Li Junjie, Wang Jincheng. Effect of self-induced magnetic field on liquid flow and segregation during VAR process for titanium alloys[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 55-61. doi: 10.7513/j.issn.1004-7638.2023.04.008

钛合金VAR过程中自感电磁场对流场与偏析行为的影响

doi: 10.7513/j.issn.1004-7638.2023.04.008
基金项目: 博士后国际交流计划项目(YJ20210408)。
详细信息
    作者简介:

    黄立清,1989年出生,男,湖南常德人,博士,主要从事钛合金熔炼及塑性加工方面的研究工作,E-mail:liqinghuang2017@163.com

    通讯作者:

    樊凯,1982年出生,男,陕西富平人,博士,正高级工程师,主要从事钛合金熔炼及塑性加工方面的研究工作,E-mail:fk@xtjtty.com

  • 中图分类号: TF823,TG146.2

Effect of self-induced magnetic field on liquid flow and segregation during VAR process for titanium alloys

Funds: This work was financially supported by the International Postdoctoral Exchange Program (YJ20210408).
  • 摘要: 采用合金凝固的连续介质模型,模拟了钛合金真空自耗电弧熔炼过程中温度场、溶质场、流场、自感电磁场的演化行为。通过对比浮力单独作用、自感电磁力单独作用以及二者共同作用下的熔池流动及成分偏析结果,揭示了熔炼过程中熔体流动和溶质偏析的形成机理。结果表明,0.3 kA小电流熔炼时,熔池内熔体流动由浮力主导,形成侧壁向下、中心向上的对流;0.73 kA大电流熔炼时,熔池内呈现由电磁力主导的反向对流,熔池最大流速为0.036 m/s;0.45 kA中等电流熔炼时,浮力和电磁力对熔体流动的作用均比较明显,熔池内形成两个流动方向相反的区域,且由于两者相互竞争制约,导致熔池中最大流速达到极低值0.004 m/s。铸锭整体宏观成分偏析随着熔炼电流的增加呈现先上升后下降再上升的变化规律,三阶段宏观偏析的极值分别为0.54%、0.39%与0.57%。当电磁力和浮力作用基本相当时,宏观偏析程度最轻。
  • 图  1  VAR过程磁通密度绝对值|B|和洛伦兹力F随时间的演化,每个时刻中左图为|B|分布,右图为F分布

    Figure  1.  The absolute value of the magnetic flux density (|B|, left) and Lorentz force vector (F, right) evolution with time during VAR process

    图  2  不同熔炼电流下(从左往右),浮力与洛伦兹力单独作用及耦合作用下(从上往下)温度场与流场分布,每幅图左半边为温度场、右半边为熔池轮廓和流场

    Figure  2.  Temperature distribution and melt flow under different current with buoyancy force and/or Lorentz force

    图  3  不同熔炼电流下浮力与电磁力综合作用下熔池内温度场和流场分布

    Figure  3.  Distribution of temperature field and flow field driven by buoyancy and Lorentz force with different remelting current

    图  4  熔池内最大流速及熔池深度随熔炼电流的变化规律

    Figure  4.  The maximum velocity in molten pool and pool depth with different remelting current

    图  5  0.45 kA电流熔炼过程中溶质分布随时间演化,每幅图右侧为耦合流场及熔池轮廓

    Figure  5.  The concentration evolution with time during the 0.45 kA current remelting process, coupled flow field and pool’s profile on the right side of each picture

    图  6  0.3 kA (a)与0.73 kA (b)下熔炼到达最大高度时的流场与偏析

    Figure  6.  Solute distribution and melt flow when the ingot reaches a maximum height using 0.3 kA(a) and 0.73 kA(b)

    图  7  铸锭整体宏观偏析数随熔炼电流的变化

    Figure  7.  GMI under different remelting current

    表  1  计算模型采用的物性参数[13]

    Table  1.   Physical parameters of the computational model

    密度 / (kg·m−3扩散系数 / (m2·s−1)熔化潜热 / (J·kg−1)V分配
    系数
    液相线斜率 / (K·%−1)热膨胀系
    数 / %−1
    比热容 / (J·kg−1·K−1)热导率 / (W·m−1·K−1)流体粘度/ (kg·m−1·s−1)电导率 / (S·m−1)磁导率 / (H·m−1)
    41704.0×10−93.77×1050.95−2.0−0.3597532.73.1×10−31.0×1061.26×10−6
    下载: 导出CSV
  • [1] Li Xiong, Pang Kechang, Guo Hua, et al. Melting technology of wrought Ti and Ti alloy[J]. The Chinese Journal of Nonferrous Metals, 2010,20(S1):906−913. (李雄, 庞克昌, 郭华, 等. 变形钛及钛合金熔炼技术[J]. 中国有色金属学报, 2010,20(S1):906−913. doi: 10.19476/j.ysxb.1004.0609.2010.s1.195

    Li Xiong, Pang Kechang, Guo Hua, et al. Melting technology of wrought Ti and Ti alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(S1): 906-913. doi: 10.19476/j.ysxb.1004.0609.2010.s1.195
    [2] Hayakawa H, Fukada N, Udagawa T, et al. Solidification structure and segregation in cast ingots of titanium alloy produced by vacuum arc consumable electrode method[J]. ISIJ International, 1991,31(8):775−784. doi: 10.2355/isijinternational.31.775
    [3] Mitchell A, Kawakami A, Cockcroft S L. Beta fleck and segregation in titanium alloy ingots[J]. High Temperature Materials Processes (London), 2006, 25(5-6): 337-349.
    [4] Liu Yingying, Chen Ziyong, Jin Tounan, et al. Present situation and prospect of 600 ℃ high-temperature titanium alloys[J]. Materials Reports, 2018,32(11):1863−1869,1883. (刘莹莹, 陈子勇, 金头男, 等. 600 ℃高温钛合金发展现状与展望[J]. 材料导报, 2018,32(11):1863−1869,1883. doi: 10.11896/j.issn.1005-023X.2018.11.013

    Liu Yingying, Chen Ziyong, Jin Tounan, et al. Present situation and prospect of 600 ℃ high-temperature titanium alloys[J]. Materials Reports, 2018, 32(11): 1863-1869+1883. doi: 10.11896/j.issn.1005-023X.2018.11.013
    [5] Dobatkin V I, Anoshkin N F. Comparison of macrosegregation in titanium and aluminium alloy ingots[J]. Materials Science and Engineering A, 1999,263(2):224−229. doi: 10.1016/S0921-5093(98)01152-6
    [6] Zhao Yongqing, Liu Junlin, Zhou Lian. Analysis on the segregation of typical β alloying elements of Cu, Fe and Cr in Ti alloys[J]. Rare Metal Materials and Engineering, 2005,34(4):531−538. (赵永庆, 刘军林, 周廉. 典型β型钛合金元素Cu, Fe和Cr的偏析规律[J]. 稀有金属材料与工程, 2005,34(4):531−538.

    Zhao Yongqing, Liu Junlin, Zhou Lian. Analysis on the segregation of typical β alloying elements of Cu, Fe and Cr in Ti alloys[J]. Rare Metal Materials and Engineering, 2005, 34(4): 531-538.
    [7] Liu Junling, Zhao Yongqing, Zhou Lian. Segregation of Ti-2.5Cu, Ti-3Fe and Ti-3Cr alloy ingots[J]. Rare Metal Materials and Engineering, 2004,33(7):731−735. (刘军林, 赵永庆, 周廉. Ti-2.5Cu, Ti-3Fe, Ti-3Cr合金铸锭的偏析[J]. 稀有金属材料与工程, 2004,33(7):731−735. doi: 10.3321/j.issn:1002-185X.2004.07.014

    Liu Junling, Zhao Yongqing, Zhou Lian. Segregation of Ti-2.5 Cu, Ti-3 Fe and Ti-3 Cr alloy ingots[J]. Rare Metal Materials and Engineering, 2004, 33(7): 731-735. doi: 10.3321/j.issn:1002-185X.2004.07.014
    [8] Davidson P A, He X, Lowe A J. Flow transitions in vacuum arc remelting[J]. Materials Science and Technology, 2000,16(6):699−711. doi: 10.1179/026708300101508306
    [9] Kondrashov E N, Musatov M I, Maksimov A Yu, et al. Calculation of the molten pool depth in vacuum arc remelting of alloy VT3-1[J]. Journal of Engineering Thermophysics, 2007,16(1):19−25. doi: 10.1134/S1810232807010031
    [10] Xiao Cong. Simulation and industrial validation of molten pool morphology and solidification structure of pure titanium during VAR process[J]. Iron Steel Vanadium Titanium, 2016,37(2):44−49,83. (肖聪. 纯钛VAR熔池形貌和凝固组织模拟及其工业验证[J]. 钢铁钒钛, 2016,37(2):44−49,83.

    Xiao Cong. Simulation and industrial validation of molten pool morphology and solidification structure of pure titanium during VAR process[J]. Iron Steel Vanadium Titanium, 2016, 37(2): 44-49+83.
    [11] Fan Kai, Wu Lincai, Li Junjie, et al. Numerical simulation of macrosegregation caused by buoyancy driven flow during VAR process for titanium alloys[J]. Rare Metal Materials and Engineering, 2020,49(3):871−877. (樊凯, 吴林财, 李俊杰, 等. 钛合金VAR过程中自然对流下的宏观偏析行为模拟[J]. 稀有金属材料与工程, 2020,49(3):871−877.

    Fan Kai, Wu Lincai, Li Junjie, et al. Numerical simulation of macrosegregation caused by buoyancy driven flow during VAR process for titanium alloys[J]. Rare Metal Materials and Engineering, 2020, 49(3): 871-877.
    [12] Kou H, Zhang Y, Yang Z, et al. Liquid metal flow behavior during vacuum consumable arc remelting process for titanium[J]. International Journal of Engineering & Technology, 2014,12(1):50.
    [13] 吴京洋. 钛合金VAR过程中熔体流动及宏观偏析行为的数值模拟[D]. 西安: 西北工业大学, 2021.

    Wu Jingyang. Numerical simulation of liquid flow and macrosegregation behavior during VAR process for titanium alloys[D]. Xi, an: Northwestern Polytechnical University, 2021 .
    [14] Yao Jingshen, Cao Jianhua. Iron segregation in Ti-10V-2Fe-3Al alloy ingot[J]. Chinese Journal of Rare Metals, 1992,16(4):267−270. (姚锦声, 曹建华. Ti-10V-2Fe-3Al合金锭中的铁偏析[J]. 稀有金属, 1992,16(4):267−270.

    Yao Jingshen, Cao Jianhua. Iron segregation in Ti-10 V-2 Fe-3 Al alloy ingot[J]. Chinese Journal of Rare Metals, 1992, 16(4): 267-270.
    [15] Xue Xiangyi, Meng Xiangwei, Fu Baoquan, et al. Influence of arc current on solidification microstructure of Ti-10V-2Fe-3Al under vacuum arc melting[J]. The Chinese Journal of Nonferrous Metals, 2009,19(10):1772−1776. (薛祥义, 孟祥炜, 付宝全, 等. 真空自耗电弧熔炼电流对Ti-10V-2Fe-3Al铸锭凝固组织的影响[J]. 中国有色 金属学报, 2009,19(10):1772−1776.

    Xue Xiangyi, Meng Xiangwei, Fu Baoquan, et al. Influence of arc current on solidification microstructure of Ti-10 V-2 Fe-3 Al under vacuum arc melting[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(10): 1772-1776.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  50
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-27
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回