留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

球磨时间对多孔Ti-5Cu合金微观结构和力学性能的影响

麦萍

麦萍. 球磨时间对多孔Ti-5Cu合金微观结构和力学性能的影响[J]. 钢铁钒钛, 2023, 44(4): 62-67. doi: 10.7513/j.issn.1004-7638.2023.04.009
引用本文: 麦萍. 球磨时间对多孔Ti-5Cu合金微观结构和力学性能的影响[J]. 钢铁钒钛, 2023, 44(4): 62-67. doi: 10.7513/j.issn.1004-7638.2023.04.009
Mai Ping. Effect of ball milling time on the microstructure and mechanical properties of porous Ti-5Cu alloys[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 62-67. doi: 10.7513/j.issn.1004-7638.2023.04.009
Citation: Mai Ping. Effect of ball milling time on the microstructure and mechanical properties of porous Ti-5Cu alloys[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 62-67. doi: 10.7513/j.issn.1004-7638.2023.04.009

球磨时间对多孔Ti-5Cu合金微观结构和力学性能的影响

doi: 10.7513/j.issn.1004-7638.2023.04.009
基金项目: 四川省科技计划重点研发项目(2017GZ0417);钒钛资源综合利用四川省重点实验室开放基金(2019FTSZ03)。
详细信息
    作者简介:

    麦萍,1985年出生,女,四川攀枝花人,硕士研究生,助教,主要从事医用钛及钛合金相关研究,E-mail: mai1069qi@163.com

  • 中图分类号: TF823,TF123

Effect of ball milling time on the microstructure and mechanical properties of porous Ti-5Cu alloys

  • 摘要: 采用机械球磨和空间占位法经真空烧结制备生物医用多孔Ti-5Cu合金。使用扫描电子显微镜、X射线衍射仪、激光粒度仪等对球磨不同时间的金属粉末进行分析,并研究球磨时间对制备出的多孔Ti-5Cu合金微观结构和力学性能的影响。结果表明,球磨2 h时,Ti-5Cu粉末的形貌变得扁平,其平均粒径明显减小。进一步增加球磨时间仅轻微降低粉末的平均粒径。随着球磨时间的增加,制备出的具有模拟人体骨骼各向异性孔结构的多孔Ti-5Cu合金的孔隙率逐渐减小,其弹性模量和抗压强度先升高后下降。在研究的球磨时间范围内,球磨2 h的金属粉末制备出的多孔Ti-5Cu合金的弹性模量和抗压强度最高,分别为3.79 GPa和89.00 MPa。
  • 图  1  球磨不同时间的Ti-5Cu粉末的XRD谱

    Figure  1.  XRD patterns of Ti-5Cu powders ball-milled for different time

    图  2  球磨不同时间的Ti-5Cu粉末的SEM形貌

    Figure  2.  SEM images of Ti-5Cu powders ball-milled for different time

    图  3  球磨不同时间的Ti-5Cu粉末的粒径分布

    Figure  3.  Particle size distribution of Ti-5Cu powders ball-milled for different time

    图  4  球磨不同时间的粉末制备出的多孔Ti-5Cu合金的XRD谱

    Figure  4.  XRD patterns of porous Ti-5Cu alloys made from powders ball-milled for different time

    图  5  球磨不同时间的粉末制备出的多孔Ti-5Cu合金的纵向截面SEM形貌

    Figure  5.  Longitudinal cross-section SEM images of porous Ti-5Cu alloys made from powders ball-milled for different time

    图  6  球磨2 h的粉末制备出的多孔Ti-5Cu合金的SEM形貌和面扫描能谱

    Figure  6.  SEM image and EDX mapping of porous Ti-5Cu alloy made from powders ball-milled for 2 h

    图  7  球磨不同时间的粉末制备出的多孔Ti-5Cu合金的力学性能

    Figure  7.  Mechanical properties of porous Ti-5Cu alloys made from powders ball-milled for different time

  • [1] Sidhu S S, Singh H, Gepreel A H. A review on alloy design, biological response, and strengthening of β-titanium alloys as biomaterials[J]. Materials Science and Engineering C:Materials for Biological Applications, 2020,121(11):111661.
    [2] Yang Jiahui, Zhang Yifan, Wu Junxia, et al. Research progress of biomedical titanium alloy[J]. Rare Metals and Cemented Carbides, 2021,49(5):29−34,40. (杨佳惠, 张一凡, 武俊霞, 等. 生物医用钛合金研究进展[J]. 稀有金属与硬质合金, 2021,49(5):29−34,40.

    Yang Jiahui, Zhang Yifan, Wu Junxia, et al. Research progress of biomedical titanium alloy[J]. Rare Metals and Cemented Carbides, 2021, 49(5): 29-34, 40.
    [3] Zhang L C, Chen L Y. A review on biomedical titanium alloys: Recent progress and prospect[J]. Advanced Engineering Materials, 2019,21:1801215. doi: 10.1002/adem.201801215
    [4] Liu Jianqiao, Liu Jia, Tang Yujin, et al. Research progress in titanium alloy in the field of orthopaedic implants[J]. Journal of Materials Engineering, 2021,49(8):11−25. (刘剑桥, 刘佳, 唐毓金, 等. 钛合金在骨科植入领域的研究进展[J]. 材料工程, 2021,49(8):11−25. doi: 10.11868/j.issn.1001-4381.2020.000380

    Liu Jianqiao, Liu Jia, Tang Yujin, et al. Research progress in titanium alloy in the field of orthopaedic implants[J]. Journal of Materials Engineering, 2021, 49(8): 11-25. doi: 10.11868/j.issn.1001-4381.2020.000380
    [5] Chen L Y, Cui Y W, Zhang L C. Recent development in beta titanium alloys for biomedical applications[J]. Metals, 2020,10:1139. doi: 10.3390/met10091139
    [6] Rodriguez-Contreras A, Punset M, Calero J, et al. Powder metallurgy with space holder for porous titanium implants: A review[J]. Journal of Materials Science and Technology, 2021,76(17):21.
    [7] Zhang Erlin, Wang Xiaoyan, Han Yong. Research status of biomedical porous Ti and its alloy in China[J]. Acta Metallurgica Sinica, 2017,53(12):1555−1567. (张二林, 王晓燕, 憨勇. 医用多孔Ti及钛合金的国内研究现状[J]. 金属学报, 2017,53(12):1555−1567. doi: 10.11900/0412.1961.2017.00324

    Zhang Erlin, Wang Xiaoyan, Han Yong. Research status of biomedical porous Ti and its alloy in China[J]. Acta Metallurgica Sinica, 2017, 53(12): 1555-1567. doi: 10.11900/0412.1961.2017.00324
    [8] Zhao C, Liang K, Tan J, et al. Bioactivity of porous titanium with hydrogen peroxide solution with or without tantalum chloride treatment at a low temperature[J]. Biomedical Materials, 2013,8(2):025006. doi: 10.1088/1748-6041/8/2/025006
    [9] Fujibayashi S, Neo M, Kim H M, et al. Osteoinduction of porous bioactive titanium metal[J]. Biomaterials, 2004,25(3):443−450. doi: 10.1016/S0142-9612(03)00551-9
    [10] Lin Xiao, Ge Jun, Wu Shuilin, et al. Advances in metallic biomaterials with both osteogenic and anti-infection properties[J]. Acta Metallurgica Sinica, 2017,53(10):1284−1302. (林潇, 葛隽, 吴水林, 等. 兼具成骨和抗感染性能的医用金属材料研究进展[J]. 金属学报, 2017,53(10):1284−1302. doi: 10.11900/0412.1961.2017.000269

    Lin Xiao, Ge Jun, Wu Shuilin, et al. Advances in metallic biomaterials with both osteogenic and anti-infection properties[J]. Acta Metallurgica Sinica, 2017, 53(10): 1284-1302. doi: 10.11900/0412.1961.2017.000269
    [11] Chen Q, Thouas G A. Metallic implant biomaterials[J]. Materials Science and Engineering R, 2015,87:1−57. doi: 10.1016/j.mser.2014.10.001
    [12] Vincent M, Hartemann P, Engels-Deutsch M. Antimicrobial applications of copper[J]. International Journal of Hygiene & Environmental Health, 2016,219:585−591.
    [13] Akbarpour M R, Mirabad H M, Hemmati A, et al. Processing and microstructure of Ti-Cu binary alloys: A comprehensive review[J]. Progress in Materials Science, 2022,127:100933. doi: 10.1016/j.pmatsci.2022.100933
    [14] Liu J, Li F, Liu C, et al. Effect of Cu content on the antibacterial activity of titanium–copper sintered alloys[J]. Materials Science & Engineering C:Materials for Biological Applications, 2014,35(1):392−400.
    [15] Zhang E, Zheng L, Liu J, et al. Influence of Cu content on the cell biocompatibility of Ti-Cu sintered alloys[J]. Materials Science & Engineering C:Materials for Biological Applications, 2015,36(8):148−157.
    [16] Zhang E, Li S, Ren J, et al. Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys[J]. Materials Science & Engineering C:Materials for Biological Applications, 2016,69:760−768.
    [17] Liu R, Ma Z, Kunle Kolawole S, et al. In vitro study on cytocompatibility and osteogenesis ability of Ti–Cu alloy[J]. Journal of Materials Science:Materials in Medicine, 2019,30(7):75. doi: 10.1007/s10856-019-6277-z
    [18] Kikuchi M, Takahashi M, Okuno O. Elastic moduli of cast Ti-Au, Ti-Ag, and Ti-Cu alloys[J]. Dental Materials, 2006,22(7):641−646. doi: 10.1016/j.dental.2005.05.015
    [19] Alshammari Y, Yang F, Bolzoni L. Low-cost powder metallurgy Ti-Cu alloys as a potential antibacterial material[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019,95:232−239. doi: 10.1016/j.jmbbm.2019.04.004
    [20] Mai Ping, Cui Xumei, Zhao Chaoyong, et al. Effect of sintering process on microstructure and mechanical properties of porous Ti-5Cu alloy[J]. Iron Steel Vanadium Titanium, 2019,40(3):46−53. (麦萍, 崔旭梅, 赵朝勇, 等. 烧结工艺对多孔Ti-5Cu合金微观结构和力学性能的影响[J]. 钢铁钒钛, 2019,40(3):46−53.

    Mai Ping, Cui Xumei, Zhao Chaoyong, et al. Effect of sintering process on microstructure and mechanical properties of porous Ti-5 Cu alloy[J]. Iron Steel Vanadium Titanium, 2019, 40(3): 46-53.
    [21] Wang X P, Xu L J, Chen Y Y, et al. Effect of milling time on microstructure of Ti35Nb2.5Sn/10HA biocomposite fabricated by powder metallurgy and sintering[J]. Transactions of Nonferrous Metals Society of China, 2012,22(3):608−612. doi: 10.1016/S1003-6326(11)61221-1
    [22] Zhao Chaoyong, Zhang Xuefeng, Zhang Lei, et al. Preparation and mechanical properties of porous Ti-5Ag alloy[J]. Iron Steel Vanadium Titanium, 2018,39(2):49−55. (赵朝勇, 张雪峰, 张磊, 等. 多孔Ti-5Ag合金的制备及力学性能研究[J]. 钢铁钒钛, 2018,39(2):49−55. doi: 10.7513/j.issn.1004-7638.2018.02.008

    Zhao Chaoyong, Zhang Xuefeng, Zhang Lei, et al. Preparation and mechanical properties of porous Ti-5 Ag alloy[J]. Iron Steel Vanadium Titanium, 2018, 39(2): 49-55. doi: 10.7513/j.issn.1004-7638.2018.02.008
    [23] Nouri A, Hodgson P D, Wen C. Effect of ball-milling time on the structural characteristics of biomedical porous Ti–Sn–Nb alloy[J]. Materials Science and Engineering C:Materials for Biological Applications, 2011,31(5):921−928. doi: 10.1016/j.msec.2011.02.011
    [24] 唐仁政, 田荣璋. 二元合金相图及中间相晶体结构[M]. 长沙: 中南大学出版社, 2009.

    Tang Renzheng, Tian Rongzhang. Binary alloy phase diagrams and crystal structure of intermediate phase[M]. Changsha: Central South University Press, 2009.
    [25] Hou L G, Li L I, Zheng Y F. Effects of ball milling time on porous Ti–3Ag alloy and its apatite-inducing abilities[J]. Transactions of Nonferrous Metals Society of China, 2013,23(5):1356−1366. doi: 10.1016/S1003-6326(13)62604-7
    [26] Weiner S, Wagner H D. The material bone: Structure-mechanical function relations[J]. Annual Review of Materials Science, 1998,28(1):271−298. doi: 10.1146/annurev.matsci.28.1.271
    [27] Alvarez K, Nakajima H. Metallic scaffolds for bone regeneration[J]. Materials, 2009,2(3):790−832. doi: 10.3390/ma2030790
    [28] Pattanayak D K, Matsushita T, Doi K, et al. Effects of oxygen content of porous titanium metal on its apatite-forming ability and compressive strength[J]. Materials Science and Engineering C:Materials for Biological Applications, 2009,29(6):1974−1978. doi: 10.1016/j.msec.2009.03.014
    [29] Gibson L J. The mechanical behaviour of cancellous bone[J]. Journal of Biomechanics, 1985,18(5):317−328. doi: 10.1016/0021-9290(85)90287-8
  • 加载中
图(7)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  18
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-01
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回