留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温熔盐中钛铝合金电解脱铝的研究

徐培栋 谭敏 李涛 高爱民 辛朝阳 刘伟 谷少鹏

徐培栋, 谭敏, 李涛, 高爱民, 辛朝阳, 刘伟, 谷少鹏. 低温熔盐中钛铝合金电解脱铝的研究[J]. 钢铁钒钛, 2023, 44(4): 78-84. doi: 10.7513/j.issn.1004-7638.2023.04.012
引用本文: 徐培栋, 谭敏, 李涛, 高爱民, 辛朝阳, 刘伟, 谷少鹏. 低温熔盐中钛铝合金电解脱铝的研究[J]. 钢铁钒钛, 2023, 44(4): 78-84. doi: 10.7513/j.issn.1004-7638.2023.04.012
Xu Peidong, Tan Min, Li Tao, Gao Aimin, Xin Zhaoyang, Liu Wei, Gu Shaopeng. Study on electrical removal of aluminum from Ti-Al alloys in low-temperature molten salt[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 78-84. doi: 10.7513/j.issn.1004-7638.2023.04.012
Citation: Xu Peidong, Tan Min, Li Tao, Gao Aimin, Xin Zhaoyang, Liu Wei, Gu Shaopeng. Study on electrical removal of aluminum from Ti-Al alloys in low-temperature molten salt[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 78-84. doi: 10.7513/j.issn.1004-7638.2023.04.012

低温熔盐中钛铝合金电解脱铝的研究

doi: 10.7513/j.issn.1004-7638.2023.04.012
基金项目: 国家自然科学基金面上项目(No.52074056); 唐山市科技创新团队培养计划项目(21130209D); 唐山市科技计划项目(22130222H)
详细信息
    作者简介:

    徐培栋,2000年出生,男,河南许昌人,硕士研究生,主要研究方向为钛铝合金回收利用,E-mail:15530866563@163.com

    通讯作者:

    李涛,1984年出生,男,河北邢台人,教授,主要研究方向为铝电解工艺研究,E-mail: litao@ncst.edu.cn

  • 中图分类号: TG146.2,TQ151

Study on electrical removal of aluminum from Ti-Al alloys in low-temperature molten salt

  • 摘要: 为实现钛铝合金的二次回收与分离利用,以钛铝合金为牺牲阳极,1-丁基-3-甲基咪唑氯铝酸盐(BMIC-AlCl3)作为电解液,进行钛铝合金的脱合金化研究。采用循环伏安曲线、动电位极化和恒电位极化对电解过程的脱合金行为进行电化学分析;使用SEM对电解前后样品微区形貌进行表征,使用ICP-AES对电解前后钛铝合金样品中的Al含量进行定量分析。结果表明,钛铝合金在BMIC-AlCl3中的脱合金反应为准可逆反应,且长时间电解过程中电流保持稳定,可实现持续电解脱铝;通过扫描电子显微镜发现阴极沉积层为纯度较高且呈现多孔结构的金属铝。ICP-AES对电解前后的钛铝合金中Al元素含量的分析结果表明,电解后钛铝合金中Al元素含量相对于电解前下降10.67%。
  • 图  1  不同工作电极在BMIC-AlCl3中的循环伏安曲线

    (a)Pt片工作电极;(b)Al片工作电极;(c)Ti片工作电极;(d)钛铝合金工作电极

    Figure  1.  Cyclic voltammetry curves of different working electrodes in BMIC-AlCl3

    图  2  BMIC-AlCl3溶液中45 ℃时钛铝合金阳极极化曲线

    Figure  2.  Anode polarization curve of Ti-Al alloy at 45 ℃ in BMIC-AlCl3 solution

    图  3  钛铝合金在不同电位下电解时的电流密度随时间变化曲线

    Figure  3.  The curve of current density with time during electrolysis of Ti-Al alloy at different potentials

    图  4  电解后阴极镀层形貌和能谱

    Figure  4.  Morphology and energy dispersive spectrum of cathode coating after electrolysis

    图  5  阴极镀层微观形貌及元素分布

    Figure  5.  Microstructure and element distribution of cathode coatings

    图  6  钛铝合金粉末的动态极化曲线

    Figure  6.  Dynamic polarization curves of Ti-Al alloy powder

    表  1  钛铝合金成分

    Table  1.   Ti-Al alloy composition %

    TiAlO
    37.6161.191.2
    下载: 导出CSV
  • [1] Bolivar R, Friedrich B. Magnesiothermic reduction from titanium dioxide to produce titanium powder[J]. Journal of Sustainable Metallurgy, 2019,5(2):219−229. doi: 10.1007/s40831-019-00215-z
    [2] Lee D W, Kim B K. Synthesis of nano-structured titanium carbide by Mg-thermal reduction[J]. Scripta materialia, 2003,48(11):1513−1518. doi: 10.1016/S1359-6462(03)00130-1
    [3] Zein El Abedin S, Moustafa E M, Hempelmann R, et al. Electrodeposition of nano- and microcrystalline aluminium in three different air and water stable ionic liquids[J]. Chemphyschem:A European Journal of Chemical Physics and Physical Chemistry, 2006,7(7):1535−1543. doi: 10.1002/cphc.200600095
    [4] Li Yaning, Li Guangzhong, Zhang Wenyan, et al. Nanoporous Ti alloy foam prepared by dealloying[J]. Rare Metal Materials and Engineering, 2013,42(10):2197−2200. (李亚宁, 李广忠, 张文彦, 等. 脱合金法制备纳米多孔泡沫钛合金[J]. 稀有金属材料与工程, 2013,42(10):2197−2200.

    Li Yaning, Li Guangzhong, Zhang Wenyan, et al. Nanoporous Ti alloy foam prepared by dealloying[J]. Rare Metal Materials and Engineering, 2013, 42(10): 2197-2200.
    [5] Jiang Weiyan, Yu Wenzhou. Classification, synthesis and application of ionic liquid[J]. Metal Materials and Metallurgy Engineering, 2008,(4):51−54. (蒋伟燕, 余文轴. 离子液体的分类、合成及应用[J]. 金属材料与冶金工程, 2008,(4):51−54. doi: 10.3969/j.issn.1005-6084.2008.04.014

    Jiang Weiyan, Yu Wenyou. Classification, synthesis and application of ionic liquid[J]. Metal Materials and Metallurgy Engineering, 2008(4): 51-54. doi: 10.3969/j.issn.1005-6084.2008.04.014
    [6] Fournier C, Favier F. Zn, Ti and Si nanowires by electrodeposition in ionic liquid[J]. Electrochemistry Communications, 2011,13(11):1252−1255. doi: 10.1016/j.elecom.2011.08.031
    [7] Koronaios P, Osteryoung R A. CaCl2 and MgCl2 as buffering agents for room-temperature chloroaluminate ionic liquids[J]. Journal of the Electrochemical Society, 1999,146(8):2995. doi: 10.1149/1.1392041
    [8] Wang X R, Hua Y X, Zhao Q N, et al. Electrical conductivity of AlCl3-BMIC room temperature ionic liquids[J]. Chinese Journal of Nonferrous Metals, 2006,16:2138−2142.
    [9] Armand M, Endres F, Macfarlane D R, et al. Ionic-liquid materials for the electrochemical challenges of the future[J]. Nature Materials, 2009,8(8):621−629. doi: 10.1038/nmat2448
    [10] Zhang Jinsheng, Tian Zhonghe, Li Lihua, et al. Application of ionic liquids in nanomaterial field[J]. New Chemical Materials, 2018,46(8):34−37. (张金生, 田中禾, 李丽华, 等. 纳米材料合成领域中离子液体的应用[J]. 化工新型材料, 2018,46(8):34−37.

    Zhang Jinsheng, Tian Zhonghe, Li Lihua, et al. Application of ionic liquids in nanomaterial field[J]. New Chemical Materials, 2018, 46(8): 34-37.
    [11] Mukhopadhyay I, Aravinda C L, Borissov D, et al. Electrodeposition of Ti from TiCl4 in the ionic liquid l-methyl-3-butyl-imidazolium bis (trifluoro methyl sulfone) imide at room temperature: study on phase formation by in situ electrochemical scanning tunneling microscopy[J]. Electrochimica Acta, 2005,50(6):1275−1281. doi: 10.1016/j.electacta.2004.07.052
    [12] Mukhopadhyay I, Freyland W. Electrodeposition of Ti nanowires on highly oriented pyrolytic graphite from an ionic liquid at room temperature[J]. Langmuir, 2003,19(6):1951−1953. doi: 10.1021/la020891j
    [13] Endres F, Zein El Abedin S, Saad A Y, et al. On the electrodeposition of titanium in ionic liquids[J]. Physical Chemistry Chemical Physics, 2008,10(16):2189−2199. doi: 10.1039/b800353j
    [14] 王喜然. BMIC-AlCl3离子液体电解精炼铝的研究[D]. 昆明: 昆明理工大学, 2006.

    Wang Xiran. Electrorefining of aluminum with BMIC-AlCl3 ionic liquid[D]. Kunming: Kunming University of Science and Technology, 2006.
    [15] Zhang X, Hua Y, Xu C, et al. Direct electrochemical reduction of titanium dioxide in Lewis basic AlCl3-1-butyl-3-methylimidizolium ionic liquid[J]. Electrochimica Acta, 2011,56(24):8530−8533. doi: 10.1016/j.electacta.2011.07.037
    [16] Bakkar A, Neubert V. A new method for practical electrodeposition of aluminium from ionic liquids[J]. Electrochemistry Communications, 2015,51:113−116. doi: 10.1016/j.elecom.2014.12.012
    [17] Jiang T, Chollier B M J, Dube G, et al. Electrodeposition of aluminium from ionic liquids: Part I—electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)-1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids[J]. Surface and Coatings Technology, 2006,201(1):1−9.
    [18] El Abedins S Z, Moustafa E M, Hempelmann R, et al. Additive free electrodeposition of nanocrystalline aluminium in a water and air stable ionic liquid[J]. Electrochemistry Communications, 2005,7(11):1111−1116. doi: 10.1016/j.elecom.2005.08.010
    [19] Tsuda T, Hussey C L, Stafford G R, et al. Electrochemistry of titanium and the electrodeposition of Al-Ti alloys in the Lewis acidic aluminum chloride-1-ethyl-3-methylimidazolium chloride melt[J]. Journal of the Electrochemical Society, 2003,150(4):234. doi: 10.1149/1.1554915
    [20] Pradhan D, Reddy R G. Dendrite-free aluminum electrodeposition from AlCl3-1-ethyl-3-methyl-imidazolium chloride ionic liquid electrolytes[J]. Metallurgical and Materials Transactions B, 2012,43(3):519−531. doi: 10.1007/s11663-011-9623-1
    [21] Wagner K, Brankovic S R, Dimitrov N, et al. Dealloying below the critical potential[J]. Journal of the Electrochemical Society, 1997,144(10):3545. doi: 10.1149/1.1838046
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  37
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-26
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回