留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质还原提钒废渣回收有价金属的试验研究

高阳 谢华清 周密 郭锐 秦梦鑫 王征宇 代兵

高阳, 谢华清, 周密, 郭锐, 秦梦鑫, 王征宇, 代兵. 生物质还原提钒废渣回收有价金属的试验研究[J]. 钢铁钒钛, 2023, 44(4): 89-95. doi: 10.7513/j.issn.1004-7638.2023.04.014
引用本文: 高阳, 谢华清, 周密, 郭锐, 秦梦鑫, 王征宇, 代兵. 生物质还原提钒废渣回收有价金属的试验研究[J]. 钢铁钒钛, 2023, 44(4): 89-95. doi: 10.7513/j.issn.1004-7638.2023.04.014
Gao Yang, Xie Huaqing, Zhou Mi, Guo Rui, Qin Mengxin, Wang Zhengyu, Dai Bing. Experimental research on the recycling of valuable metal elements with the extracted-vanadium residues reduced by biomass[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 89-95. doi: 10.7513/j.issn.1004-7638.2023.04.014
Citation: Gao Yang, Xie Huaqing, Zhou Mi, Guo Rui, Qin Mengxin, Wang Zhengyu, Dai Bing. Experimental research on the recycling of valuable metal elements with the extracted-vanadium residues reduced by biomass[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 89-95. doi: 10.7513/j.issn.1004-7638.2023.04.014

生物质还原提钒废渣回收有价金属的试验研究

doi: 10.7513/j.issn.1004-7638.2023.04.014
基金项目: 国家自然科学基金资助项目(52074081);中央高校基本科研业务费(N2225043);冶金减排与资源综合利用教育部重点实验室开放课题(JKF19-06)。
详细信息
    作者简介:

    高阳,2000年出生,女,辽宁铁岭人,硕士研究生,主要从事固废资源化利用,E-mail:2712942966@qq.com

    通讯作者:

    谢华清,1987年出生,男,副教授,E-mail:xiehq@mail.neu.edu.cn

  • 中图分类号: X757,TG144

Experimental research on the recycling of valuable metal elements with the extracted-vanadium residues reduced by biomass

  • 摘要: 为解决提钒废渣堆积造成的土地资源浪费、污染环境等问题,以两种提钒废渣为研究对象,采用生物质作为还原剂进行高温还原试验,对还原产物进行组分分析、物相分析等,探究吸氧比、时间、温度对还原过程、产物金属化率的影响。结果表明,水浸提钒废渣在吸氧比为4、还原温度为1450 ℃、还原时间为2 h的条件下,铁金属化率可达到58.67%;沉钒废渣在吸氧比为1.75、还原温度为1550 ℃、还原时间为4 h的条件下,铬金属化率可达到99.19%。将两种提钒废渣混合,进行了生物质高温还原制备铬铁合金的初步试验验证,对在吸氧比4、还原时间3 h、反应温度1550 ℃条件下所得的还原产物进行熔分,合金中铬含量为61.51%,铁含量为31.05%,元素含量满足FeCr65C4.0牌号合金的国家标准要求。
  • 图  1  吸氧比对生物质还原水浸提钒废渣的影响

    Figure  1.  Effect of XAOR on the reduction of water leaching residues after vanadium extraction

    图  2  还原时间对生物质还原水浸提钒废渣的影响

    Figure  2.  Effect of reduction time on the reduction of water leaching residues after vanadium extraction with biomass

    图  3  还原温度对生物质还原水浸提钒废渣的影响

    Figure  3.  Effect of temperature on the reduction of water leaching residues after vanadium extraction with biomass

    图  4  吸氧比对生物质还原沉钒废渣的影响

    Figure  4.  Effect of XAOR on the reduction of vanadium-precipitated residues with biomass

    图  5  还原时间对生物质还原沉钒废渣的影响

    Figure  5.  Effect of reduction time on the reduction of vanadium-precipitated residues with biomass

    图  6  还原温度对生物质还原沉钒废渣的影响

    Figure  6.  Effect of temperature on the reduction of vanadium-precipitated residues with biomass

    图  7  熔分后合金相的XRD图谱

    Figure  7.  XRD pattern of alloy phases after melting

    表  1  水浸提钒废渣主要化学成分

    Table  1.   Main chemical composition of extracted-vanadium residues from water-immersed %

    Fe2O3SiO2TiO2MnOCr2O3CrO3Al2O3CaOMgONa2O
    49.3714.9312.178.327.580.603.551.651.090.73
    下载: 导出CSV

    表  2  沉钒废渣主要化学成分

    Table  2.   Main chemical composition of extracted-vanadium residues from sediment of vanadium %

    Cr2O3(NH4)2SO4SiO2V2O5Na2OCaOK2OMgOFe2O3CrO3
    67.4617.499.571.781.191.020.120.090.051.22
    下载: 导出CSV

    表  3  花生壳元素分析

    Table  3.   Element analysis of peanut shells %

    CHONS总计
    47.225.6646.110.930.08100
    下载: 导出CSV

    表  4  还原条件与金属化率

    Table  4.   Reduction conditions and metallization rate

    还原条件铁金属化率/%铬金属化率/%
    吸氧比还原时间/h还原温度/℃
    43155099.3159.08
    下载: 导出CSV

    表  5  合金主要化学成分与FeCr65C4.0牌号合金的国家标准

    Table  5.   Chemical composition of alloy and national standard of FeCr65C4.0 %

    CrFeCSiS
    国家标准60~70≤4≤3≤0.05
    测试含量61.5131.052.32.720.04
    下载: 导出CSV
  • [1] Qing Xuemei, Xie Bing, Li Danke, et al. Study on the oxidation of vanadium in molten iron and the formation of ferrovanadium spine[J]. Journal of Process Engineering, 2009,9(z1):122−126. (青雪梅, 谢兵, 李丹柯, 等. 铁水中钒氧化及钒铁尖晶石形成的研究[J]. 过程工程学报, 2009,9(z1):122−126.

    Qing Xuemei, Xie Bing, Li Danke, et al. Study on the oxidation of vanadium in molten iron and the formation of ferrovanadium spinel[J]. Journal of Process Engineering, 2009, 9 ( z1 ): 122-126
    [2] Liu Jinsheng, Ding Xueyong, Xue Xiangxin, et al. Research progress on comprehensive utilization of vanadium slag[J]. Iron & Steel, 2021,56(7):152−160. (刘金生, 丁学勇, 薛向欣, 等. 提钒废渣资源化综合利用的研究进展[J]. 钢铁, 2021,56(7):152−160.

    Liu Jinsheng, Ding Xueyong, Xue Xiangxin, et al. Research progress on comprehensive utilization of vanadium slag[J]. Iron & Steel, 2021, 56 (7): 152-160
    [3] Taylor P R, Shuey S A, Vidal E E, et al. Extractive metallurgy of vanadium-containing titaniferous magnetite ores: a review[J]. Minerals & Metallurgical Processing, 2006,23(2):80−86.
    [4] Meng Lipeng, Zhao Chu, Wang Shaona, et al. Research progress on vanadium re-extraction technology from vanadium extraction slag in China[J]. Iron Steel Vanadium Titanium, 2015,36(3):49−56. (孟利鹏, 赵楚, 王少娜, 等. 国内提钒废渣再提钒技术研究进展[J]. 钢铁钒钛, 2015,36(3):49−56. doi: 10.7513/j.issn.1004-7638.2015.03.011

    Meng Lipeng, Zhao Chu, Wang Shaona, et al. Research progress on vanadium re-extraction technology from vanadium extraction slag in China[J]. Iron Steel Vanadium Titanium, 2015, 36 (3): 49-56 doi: 10.7513/j.issn.1004-7638.2015.03.011
    [5] Hou Jing, Wu Enhui, Li Jun. Research status and progress of comprehensive utilization of vanadium extraction residue[J]. Mineral Protection and Utilization, 2017,(6):103−108. (侯静, 吴恩辉, 李军. 提钒尾渣的综合利用研究现状及进展[J]. 矿产保护与利用, 2017,(6):103−108.

    Hou Jing, Wu Enhui, Li Jun. Research status and progress of comprehensive utilization of vanadium extraction residue[J]. Mineral Protection and Utilization, 2017, (6): 103-108
    [6] Yang Huifen, Wang Jingjing, Jing Lili, et al. Effect of roasting temperature on coal-based direct reduction of high-iron vanadium slag[J]. Journal of Beijing University of Science and Technology, 2010,32(10):1258−1263. (杨慧芬, 王静静, 景丽丽, 等. 焙烧温度对高铁提钒废渣煤基直接还原效果影响[J]. 北京科技大学学报, 2010,32(10):1258−1263.

    Yang Huifen, Wang Jingjing, Jing Lili, et al. Effect of roasting temperature on coal-based direct reduction of high-iron vanadium slag[J]. Journal of Beijing University of Science and Technology, 2010, 32 (10): 1258 - 1263
    [7] Wu Enhui, Zhu Rong, Yang Shaoli, et al. Thermodynamic analysis and experiment on smelting reduction of carbon-containing pellets from vanadium slag by electric arc furnace[J]. Iron Steel Vanadium Titanium, 2015,36(5):41−46. (吴恩辉, 朱荣, 杨绍利, 等. 提钒废渣含碳球团电弧炉熔融还原热力学分析与试验[J]. 钢铁钒钛, 2015,36(5):41−46.

    Wu Enhui, Zhu Rong, Yang Shaoli, et al. Thermodynamic analysis and experiment on smelting reduction of carbon-containing pellets from vanadium slag by electric arc furnace[J]. Iron Steel Vanadium Titanium, 2015, 36(5): 41-46
    [8] Bu Qingjie, Luo Siyi, Ma Chen, et al. Experimental study of biomass tar reduction of iron ore[J]. Steel Research, 2015,43(2):1−4,13. (卜庆洁, 罗思义, 马晨, 等. 生物质焦油还原多孔铁矿粉试验研究[J]. 钢铁研究, 2015,43(2):1−4,13.

    Bu Qingjie, Luo Siyi, Ma Chen, et al. Experimental study of biomass tar reduction of iron ore[J]. Steel Research, 2015, 43 (2): 1-4, 13
    [9] Hu Lile, Li Liang, Li Junsheng. Characteristics and environmental effects of biomass energy[J]. Energy and Environment, 2012,(1):47−49. (胡理乐, 李亮, 李俊生. 生物质能源的特点及其环境效应[J]. 能源与环境, 2012,(1):47−49.

    Hu Lile, Li Liang, Li Junsheng. Characteristics and environmental effects of biomass energy[J]. Energy and Environment, 2012, (1): 47-49
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  41
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-27
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回