留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同粒径气淬钢渣磨料的性能研究

李硕 邢宏伟 刘超 林文龙 张伟 谷少鹏 王辉 裴晶晶

李硕, 邢宏伟, 刘超, 林文龙, 张伟, 谷少鹏, 王辉, 裴晶晶. 不同粒径气淬钢渣磨料的性能研究[J]. 钢铁钒钛, 2023, 44(4): 96-102. doi: 10.7513/j.issn.1004-7638.2023.04.015
引用本文: 李硕, 邢宏伟, 刘超, 林文龙, 张伟, 谷少鹏, 王辉, 裴晶晶. 不同粒径气淬钢渣磨料的性能研究[J]. 钢铁钒钛, 2023, 44(4): 96-102. doi: 10.7513/j.issn.1004-7638.2023.04.015
Li Shuo, Xing Hongwei, Liu Chao, Lin Wenlong, Zhang Wei, Gu Shaopeng, Wang Hui, Pei Jingjing. Research on properties of air-quenched steel slag abrasives with different particle sizes[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 96-102. doi: 10.7513/j.issn.1004-7638.2023.04.015
Citation: Li Shuo, Xing Hongwei, Liu Chao, Lin Wenlong, Zhang Wei, Gu Shaopeng, Wang Hui, Pei Jingjing. Research on properties of air-quenched steel slag abrasives with different particle sizes[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 96-102. doi: 10.7513/j.issn.1004-7638.2023.04.015

不同粒径气淬钢渣磨料的性能研究

doi: 10.7513/j.issn.1004-7638.2023.04.015
基金项目: 河北省重点研发计划项目(22373805D);唐山市科技项目(21130211C)
详细信息
    作者简介:

    李硕:李 硕,1997年出生,男,河北衡水人,硕士研究生,主要从事冶金固废方面研究,E-mail:1729956462@qq.com

    通讯作者:

    刘超,1989年出生,男,博士,副教授,E-mail:dbdxlc@126.com

  • 中图分类号: X757,TF09

Research on properties of air-quenched steel slag abrasives with different particle sizes

  • 摘要: 以固态钢渣为原料,经电弧炉高温重熔后,采用气淬法制备了不同粒径的钢渣。对比不同粒径气淬钢渣在物相组成、显微结构、表观密度、形貌特征以及硬度方面的异同,并分析气淬钢渣用作喷砂磨料的可行性,选择磨料性能较好的气淬钢渣进行喷砂试验。结果表明,不同粒径气淬钢渣的物相组成基本一致,主要为硅酸钙相和方镁石相;表观密度随着粒径增大而减小,均符合非金属磨料的密度标准;五个粒径的气淬钢渣维氏硬度(HV)平均值均超过588,适合用作喷砂磨料。综合考虑不同粒径下气淬钢渣磨料的性能和喷砂效果,0.5~1.0 mm的气淬钢渣最适合用作喷砂磨料。
  • 图  1  转炉钢渣的XRD图谱

    Figure  1.  XRD pattern of converter steel slag

    图  2  不同粒径下气淬钢渣的XRD图谱

    Figure  2.  XRD pattern of air-quenched steel slag with different particle sizes

    图  3  不同粒径气淬钢渣的SEM形貌

    Figure  3.  SEM images of air-quenched steel slag with different particle sizes

    图  4  不同粒径气淬钢渣的表观形貌

    Figure  4.  Apparent morphology of air-quenched steel slag with different particle sizes

    图  5  不同粒径范围内气淬钢渣的维氏硬度

    Figure  5.  Vickers hardness of air-quenched steel slag in different particle size range

    图  6  喷砂前后的工件表面形貌

    Figure  6.  Workpiece surface before and after sandblasting

    表  1  钢渣的主要化学成分

    Table  1.   Main chemical compositions of steel slags %

    样品CaOSiO2MgOAl2O3TFeFeOFe2O3MFeTiO2
    转炉钢渣38.5213.9611.926.02171.8820.21.40.74
    气淬钢渣47.0618.5214.683.166.043.581.21
    下载: 导出CSV

    表  2  气淬钢渣的表观密度

    Table  2.   Apparent density of air-quenched steel slag

    粒径范围/mm表观密度/(g·cm−3)
    0.2~0.53.299
    0.5~1.03.164
    1.0~1.43.129
    1.4~2.03.100
    2.0~2.83.069
    下载: 导出CSV

    表  3  磨料的表观密度[12-13,20]

    Table  3.   Apparent density of abrasives g/cm3

    钢渣特种型砂炼铁炉渣石榴石钢砂棕刚玉铜炉渣
    3.703.00~3.304.107.403.903.40~3.60
    下载: 导出CSV

    表  4  工件喷砂前后的表面粗糙度

    Table  4.   Surface roughness of workpiece before and after sandblasting

    粒径范围/mm表面粗糙度/μm备注
    RaRz
    喷砂前0.1040.520锈蚀工件
    0.2~0.52.59618.363喷砂后
    0.5~1.03.37020.178喷砂后
    1.0~1.45.07633.297喷砂后
    下载: 导出CSV
  • [1] Wu Yuedong, Peng Ben, Wu Long, et al. Review on global development of treatment and utilization of steel slag[J]. Environmental Engineering, 2021,39(1):161−165. (吴跃东, 彭犇, 吴龙, 等. 国内外钢渣处理与资源化利用技术发展现状综述[J]. 环境工程, 2021,39(1):161−165. doi: 10.13205/j.hjgc.202101025

    Wu Yuedong, Peng Ben, Wu Long, et al. Review on global development of treatment and utilization of steel slag[J]. Environmental Engineering, 2021, 39(1): 161-165. doi: 10.13205/j.hjgc.202101025
    [2] Ma Lintao, Sheng Guohua, Wang Xiaoyu, et al. Experimental study on the compressive strength of cement-based composites with super high volume of steel slag[J]. Concrete, 2022,(8):102−104. (马麟涛, 盛国华, 王肖宇, 等. 超高掺量钢渣水泥基复合材料抗压试验研究[J]. 混凝土, 2022,(8):102−104. doi: 10.3969/j.issn.1002-3550.2022.08.022

    Ma Lintao, Sheng Guohua, Wang Xiaoyu, et al. Experimental study on the compressive strength of cement-based composites with super high volume of steel slag [J]. Concrete, 2022(8): 102-104. doi: 10.3969/j.issn.1002-3550.2022.08.022
    [3] Yan Feng, Huang Xiaoming, Guo Rongxin, et al. Research status of improving volume stability of steel slag by pretreatment[J]. Iron and Steel, 2022,57(10):30−42. (颜峰, 黄小明, 郭荣鑫, 等. 预处理改善钢渣体积安定性的研究现状[J]. 钢铁, 2022,57(10):30−42.

    Yan Feng, Huang Xiaoming, Guo Rongxin, et al. Research status of improving volume stability of steel slag by pretreatment[J]. Iron and Steel, 2022, 57(10): 30-42.
    [4] Zhang Jun, Yan Dingliu, Qi Yuanhong, et al. Difficulty analysis on treatment and utilization of iron and steel smelting slag[J]. Iron and Steel, 2020,55(1):1−5. (张俊, 严定鎏, 齐渊洪, 等. 钢铁冶炼渣的处理利用难点分析[J]. 钢铁, 2020,55(1):1−5. doi: 10.13228/j.boyuan.issn0449-749x.20190171

    Zhang Jun, Yan Dingliu, Qi Yuanhong, et al. Difficulty analysis on treatment and utilization of iron and steel smelting slag[J]. Iron and Steel, 2020, 55(1): 1-5. doi: 10.13228/j.boyuan.issn0449-749x.20190171
    [5] Piatak N M, Parsons M S, Seal R R. Characteristics and environmental aspects of slag: A review[J]. Applied Geochemistry, 2015,57:236−266. doi: 10.1016/j.apgeochem.2014.04.009
    [6] O’Connor J, Nguyen T B T, Honeyands T, et al. Production, characterization, utilization, and beneficial soil application of steel slag: A review[J]. Journal of Hazardous Materials, 2021,419:126478. doi: 10.1016/j.jhazmat.2021.126478
    [7] Naidu T S, Sheridan C M, Dyk L D V. Basic oxygen furnace slag: Review of current and potential uses[J]. Minerals Engineering, 2020,149:106234. doi: 10.1016/j.mineng.2020.106234
    [8] Ren Xu, Wang Huigang, Wu Yuedong, et al. Discussion on steel slag treatment and resource utilization under carbon peaking and carbon neutrality goals[J]. Environmental Engineering, 2022,40(8):220−224. (任旭, 王会刚, 吴跃东, 等. “双碳”目标下钢渣处理及资源化利用探讨[J]. 环境工程, 2022,40(8):220−224.

    Ren Xu, Wang Huigang, Wu Yuedong, et al. Discussion on steel slag treatment and resource utilization under carbon peaking and carbon neutrality goals[J]. Environmental Engineering, 2022, 40(8): 220-224.
    [9] Amran M, Murali G, Khalid N H A, et al. Slag uses in making an ecofriendly and sustainable concrete: A review[J]. Construction and Building Materials, 2021,272:121942. doi: 10.1016/j.conbuildmat.2020.121942
    [10] Pan Enyi, Chen Hongtang, Guo Peiquan. Review on protective pretreatment technology on outer surface coating on ships[J]. Modern Manufacturing Technology and Equipment, 2020,283(6):40−43. (潘恩义, 陈洪堂, 郭培全. 舰船外表面涂层防护预处理技术的研究进展[J]. 现代制造技术与装备, 2020,283(6):40−43. doi: 10.3969/j.issn.1673-5587.2020.06.015

    Pan Enyi, Chen Hongtang, Guo Peiquan. Review on protective pretreatment technology on outer surface coating on ships[J]. Modern Manufacturing Technology and Equipment, 2020, 283(6): 40-43. doi: 10.3969/j.issn.1673-5587.2020.06.015
    [11] Tang Oujing. Research and development of blasting abrasive made of steelmaking slag[J]. Baosteel Technology, 2015,183(5):23−28. (唐欧靖. 钢渣型喷砂除锈材料的研究与应用开发[J]. 宝钢技术, 2015,183(5):23−28. doi: 10.3969/j.issn.1008-0716.2015.05.005

    Tang Oujing. Research and development of blasting abrasive made of steelmaking slag[J]. Baosteel Technology, 2015, 183(5): 23-28. doi: 10.3969/j.issn.1008-0716.2015.05.005
    [12] Zhong Peng, Zhou Li, Chang Lizhong, et al. Feasibility and application effect research of the wind quenching slag as sand blasting abrasive[J]. Surface Technology, 2014,43(2):49−54. (钟鹏, 周俐, 常立忠, 等. 风淬转炉渣作为喷砂磨料的可行性及效果研究[J]. 表面技术, 2014,43(2):49−54. doi: 10.16490/j.cnki.issn.1001-3660.2014.02.024

    Zhong Peng, Zhou Li, Chang Lizhong, et al. Feasibility and application effect research of the wind quenching slag as sand blasting abrasive[J]. Surface Technology, 2014, 43(2): 49-54. doi: 10.16490/j.cnki.issn.1001-3660.2014.02.024
    [13] Gu Wenfeng, Diao Jiang, Liu Liang, et al. Investigation of properties of air-quenched steel slag as sandblasting abrasive[J]. JOM, 2021,73(10):2995−2999. doi: 10.1007/s11837-021-04819-3
    [14] Martins A C P, Franco C J M, Costa L C B, et al. Steel slags in cement-based composites: An ultimate review on characterization, applications and performance[J]. Construction and Building Materials, 2021,291:123265. doi: 10.1016/j.conbuildmat.2021.123265
    [15] Wang Jun, Li Guangqiang, Yang Xueping, et al. Change of slag composition during electroslag remelting process and prediction of the dissolved oxygen content in steel.[J]. Journal of Iron and Steel Research, 2015,27(6):18−23. (王珺, 李光强, 杨雪萍, 等. 电渣重熔过程中渣成分变化及钢中氧含量预测[J]. 钢铁研究学报, 2015,27(6):18−23. doi: 10.13228/j.boyuan.issn1001-0963.20140136

    Wang Jun, Li Guangqiang, Yang Xueping, et al. Change of slag composition during electroslag remelting process and prediction of the dissolved oxygen content in steel. [J]. Journal of Iron and Steel Research, 2015, 27(6): 18-23. doi: 10.13228/j.boyuan.issn1001-0963.20140136
    [16] Schollbach K, Ahmed M J, Laan S R. The mineralogy of air granulated converter slag[J]. International Journal of Ceramic Engineering & Science, 2020,3(1):21−36.
    [17] Huang Yi, Xu Guoping, Yang Wei. Comparative analysis of physicochemical properties and utilization way of steel slags treated with different methods[J]. Multipurpose Utilization of Mineral Resources, 2014,(6):62−66. (黄毅, 徐国平, 杨巍. 不同处理工艺的钢渣理化性质和应用途径对比分析[J]. 矿产综合利用, 2014,(6):62−66.

    Huang Yi, Xu Guoping, Yang Wei. Comparative analysis of physicochemical properties and utilization way of steel slags treated with different methods[J]. Multipurpose Utilization of Mineral Resources, 2014(6): 62-66.
    [18] Arifvianto B, Suyitno, Wibisono K A, et al. Influence of grit blasting treatment using steel slag balls on the subsurface microhardness, surface characteristics and chemical composition of medical grade 316L stainless steel[J]. Surface and Coatings Technology, 2012,210:176−182. doi: 10.1016/j.surfcoat.2012.09.014
    [19] Pei Jingjing, Zhang Yuzhu, Xing Hongwei, et al. Beading mechanism and performance of porous steel slag microbead abrasive[J]. Crystals, 2021,11(11):1377. doi: 10.3390/cryst11111377
    [20] Yang Gang, Fu Jianhua, Wang Hailong, et al. Research on the technology of steel slag applying to non-metallic blast-cleaning abrasive[J]. China Offshore Platform, 2012,27(1):54−56. (杨刚, 傅建华, 汪海龙, 等. 钢渣型砂用于非金属除锈磨料技术探讨[J]. 中国海洋平台, 2012,27(1):54−56. doi: 10.3969/j.issn.1001-4500.2012.01.012

    Yang Gang, Fu Jianhua, Wang Hailong, et al. Research on the technology of steel slag applying to non-metallic blast-cleaning abrasive[J]. China Offshore Platform, 2012, 27(1): 54-56. doi: 10.3969/j.issn.1001-4500.2012.01.012
    [21] Kang Yue, Liu Chao, Zhang Yuzhu, et al. Phase transition simulation of air quenching blast furnace slag during cooling and solidification[J]. China Metallurgy, 2022,32(5):116−124. (康月, 刘超, 张玉柱, 等. 气淬高炉熔渣冷却凝固相变特性仿真[J]. 中国冶金, 2022,32(5):116−124.

    Kang Yue, Liu Chao, Zhang Yuzhu, et al. Phase transition simulation of air quenching blast furnace slag during cooling and solidification[J]. China Metallurgy, 2022, 32(5): 116-124.
    [22] Rao Lei, Chen Guangyan, Zhou Chenhui, et al. Experimental research on steel slag as sand-blasting abrasive[J]. Journal of Anhui University of Technology(Natural Science), 2015,32(1):16−21. (饶磊, 陈广言, 周晨辉, 等. 钢渣用于喷砂磨料的试验研究[J]. 安徽工业大学学报(自然科学版), 2015,32(1):16−21.

    Rao Lei, Chen Guangyan, Zhou Chenhui, et al. Experimental research on steel slag as sand-blasting abrasive[J]. Journal of Anhui University of Technology(Natural Science), 2015, 32(1): 16-21.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  20
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-20
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回