留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁连铸过程FTSR结晶器多相传输行为的研究

许琳 裴群武 李阳 韩泽峰 杨硕 王建宇

许琳, 裴群武, 李阳, 韩泽峰, 杨硕, 王建宇. 电磁连铸过程FTSR结晶器多相传输行为的研究[J]. 钢铁钒钛, 2023, 44(4): 125-134. doi: 10.7513/j.issn.1004-7638.2023.04.019
引用本文: 许琳, 裴群武, 李阳, 韩泽峰, 杨硕, 王建宇. 电磁连铸过程FTSR结晶器多相传输行为的研究[J]. 钢铁钒钛, 2023, 44(4): 125-134. doi: 10.7513/j.issn.1004-7638.2023.04.019
Xu Lin, Pei Qunwu, Li Yang, Han Zefeng, Yang Shuo, Wang Jianyu. Investigation of multiphase transport behaviors in a FTSR mold during electromagnetic continuous casting process[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 125-134. doi: 10.7513/j.issn.1004-7638.2023.04.019
Citation: Xu Lin, Pei Qunwu, Li Yang, Han Zefeng, Yang Shuo, Wang Jianyu. Investigation of multiphase transport behaviors in a FTSR mold during electromagnetic continuous casting process[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 125-134. doi: 10.7513/j.issn.1004-7638.2023.04.019

电磁连铸过程FTSR结晶器多相传输行为的研究

doi: 10.7513/j.issn.1004-7638.2023.04.019
基金项目: 国家自然科学基金项目(51906163);辽宁省博士科研启动基金项目(2022-BS-224);辽宁省教育厅科研项目(LJKQZ20222282)。
详细信息
    作者简介:

    许琳,1989年出生,女,黑龙江嫩江人,博士研究生,讲师,通讯作者,主要工作方向为电磁流体力学,E-mail:lin_xu1989@163.com

    通讯作者:

    许琳,1989年出生,女,黑龙江嫩江人,博士研究生,讲师,通讯作者,主要工作方向为电磁流体力学,E-mail:lin_xu1989@163.com

  • 中图分类号: TF777.1

Investigation of multiphase transport behaviors in a FTSR mold during electromagnetic continuous casting process

  • 摘要: 为研究薄板坯连铸全幅一段电磁制动冶金效果,以漏斗形FTSR结晶器为研究对象,利用建立的三维多场数学模型,模拟全幅一段电磁制动作用下电磁参数变化对FTSR结晶器钢液流动、传热凝固及夹杂物迁移行为的影响。结果表明,施加全幅一段电磁制动后,结晶器内钢液温度分布的均匀性提高,钢液流股对熔池的穿透深度减小,这不仅利于下回流钢液夹带的夹杂物上浮去除,还促使上回流钢液将热量输送到弯月面区,避免弯月面处熔渣凝固而形成渣圈。此外,通过适当增加磁感应强度,可降低钢液表面流速,控制上吐出孔处液面波动。当磁感应强度达到0.3 T时,钢液表面最大流速降低至0.27 m/s,上吐出孔处液面峰值降低至7.3 mm。
  • 图  1  结晶器内夹杂物迁移过程示意

    Figure  1.  Schematic diagram of inclusion transport process in the mold

    图  2  FTSR结晶器漏斗区内坯壳表面速度分布示意

    Figure  2.  Schematic distribution of shell surface velocity on the funnel region of FTSR mold

    图  3  全幅一段电磁制动装置结构示意

    Figure  3.  Schematic diagram of Ruler-EMBr

    图  4  FTSR结晶器计算区域及网格划分示意

    Figure  4.  Computational domain and mesh of the FTSR mold

    图  5  浸入式水口结构示意

    Figure  5.  Schematic diagram of submerged entry nozzle

    图  6  数值计算与物理试验获得的凝固坯壳厚度分布比较

    Figure  6.  Comparison between the predicted shell thickness and experimental measurements

    图  7  FTSR结晶器内磁感应强度、电流密度和电磁力分布

    Figure  7.  Distribution of magnetic flux density, induced current density and electromagnetic force in the FTSR mold

    图  8  不同磁感应强度下FTSR结晶器内钢液流动与温度分布

    Figure  8.  Velocity and temperature distribution of molten steel in the FTSR mold with various magnetic flux densities

    图  9  不同磁感应强度下FTSR结晶器内表面流速分布

    Figure  9.  Profile of surface velocity in the FTSR mold with various magnetic flux densities

    图  10  不同磁感应强度下FTSR结晶器内液面波动分布

    Figure  10.  Profiles of level fluctuation in the FTSR mold with various magnetic flux densities

    图  11  不同磁感应强度下FTSR结晶器内坯壳厚度分布

    Figure  11.  Thickness distribution of solidified shell in the FTSR mold with various magnetic flux densities

    图  12  不同磁感应强度下FTSR结晶器自由液面上夹杂物分布

    Figure  12.  Inclusions distribution on the free surface in the FTSR mold with various magnetic flux densities

    表  1  FTSR结晶器计算参数

    Table  1.   Computational parameters of FTSR mold

    结晶器尺寸/
    mm × mm
    结晶器长度/mm结晶器计算域/mm漏斗最大
    开度/mm
    漏斗区长度/mm水口浸入深度/mm拉坯速度/(m∙min‒1)
    1500 × 701200400016512002254.5
    钢液密度/(kg∙m‒3)钢液黏度/(Pa∙s)钢液电导率/(S∙m‒1)磁感应强度/T固相线温度/K液相线温度/K过热度/K
    70200.00627.14 × 1050.15、0.2、0.3、0.517631 80325
    导热系数/(W∙m‒1∙K‒1)比热容/(J∙kg‒1∙K‒1)凝固潜热/(kJ∙kg‒1)热扩散系数/K‒1夹杂物比热容/(J∙kg‒1∙K‒1)夹杂物密度/(kg∙m‒3)夹杂物粒径/μm
    27[3]700[3]272[3]0.0001[25]8605000[24]50
    下载: 导出CSV

    表  2  FTSR结晶器不同网格节点数的误差统计结果

    Table  2.   Statistic results of error with different grid node numbers in the FTSR mold

    网格网格节点数$ {{{T}}_{{{{M}}_{{i}}}}} $/mm$ {\delta _{{T}}} = {{\left| {{{{T}}_{{{{M}}_{{i}}}}} - {{{T}}_{{{{M}}_1}}}} \right|} \mathord{\left/ {\vphantom {{\left| {{{\text{T}}_{{{\text{M}}_{\text{i}}}}} - {{\text{T}}_{{{\text{M}}_1}}}} \right|} {{{\text{T}}_{{{\text{M}}_1}}}}}} \right. } {{{{T}}_{{{{M}}_1}}}}} $
    M1540,00012.640
    M2860,00012.560.63%
    M31300,00012.511.03%
    下载: 导出CSV
  • [1] Yang Yadi, Zhao Jing, Cui Jianzheng. Numerical simulation on interfacial behavior and mixing phenomena in three-phase argon-stirred ladles[J]. Iron Steel Vanadium Titanium, 2021,42(5):138−148. (杨亚迪, 赵晶, 崔剑征. 三相氩气搅拌钢包内界面行为及混合现象的数值模拟[J]. 钢铁钒钛, 2021,42(5):138−148. doi: 10.7513/j.issn.1004-7638.2021.05.022

    Yang Yadi, Zhao Jing, Cui Jianzheng. Numerical simulation on interfacial behavior and mixing phenomena in three-phase argon-stirred ladles[J]. Iron Steel Vanadium Titanium, 2021, 42(5): 138-148. doi: 10.7513/j.issn.1004-7638.2021.05.022
    [2] Vakhrushev A, Wu M, Ludwig A, et al. Numerical investigation of shell formation in thin slab casting of funnel-type mold[J]. Metall. Mater. Trans. B, 2014,45(3):1024−1037. doi: 10.1007/s11663-014-0030-2
    [3] Liu H, Yang C, Zhang H, et al. Numerical simulation of fluid flow and thermal characteristics of thin slab in the funnel-type molds of two casters[J]. ISIJ Int., 2011,51(3):392−401. doi: 10.2355/isijinternational.51.392
    [4] Zhang L S, Zhang X F, Wang B, et al. Numerical analysis of the influences of operational parameters on the braking effect of EMBr in a CSP funnel-type mold[J]. Metall. Mater. Trans. B, 2014,45(1):295−306. doi: 10.1007/s11663-013-9948-z
    [5] Tian X Y, Li B W, He J C. Electromagnetic brake effects on the funnel shape mold of a thin slab caster based on a new type magnet[J]. Metall. Mater. Trans. B, 2009,40(4):596−604. doi: 10.1007/s11663-009-9246-y
    [6] Thunman M, Eckert S, Hennig O. Study on the formation of open-eye and slag entrainment in gas stirred ladle[J]. Steel Res. Int., 2007,78(12):849−856. doi: 10.1002/srin.200706297
    [7] Hwang Y S, Cha P R, Nam H S, et al. Numerical analysis of the influences of operational parameters on the fluid flow and meniscus shape in slab caster with EMBr[J]. ISIJ Int., 1997,37(7):659−667. doi: 10.2355/isijinternational.37.659
    [8] Zhu Miaoyong, Cai Zhaozhen. Heat transfer behavior and homogenous solidification control for high-speed continuous casting slab mold[J]. Chinese Journal of Engineering, 2022,44(4):703−711. (朱苗勇, 蔡兆镇. 高速连铸结晶器内凝固传热行为及其均匀性控制[J]. 工程科学学报, 2022,44(4):703−711. doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204021

    Zhu Miaoyong, Cai Zhaozhen. Heat transfer behavior and homogenous solidification control for high-speed continuous casting slab mold[J]. Chinese Journal of Engineering, 2022, 44(4): 703-711. doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204021
    [9] Zhu Miaoyong. Some considerations for new generation of high-efficiency continuous casting technology development[J]. Iron and Steel, 2019,54(8):21−36. (朱苗勇. 新一代高效连铸技术发展思考[J]. 钢铁, 2019,54(8):21−36. doi: 10.13228/j.boyuan.issn0449-749x.20190213

    Zhu Miaoyong. Some considerations for new generation of high-efficiency continuous casting technology development[J]. Iron and steel, 2019, 54(8): 21-36. doi: 10.13228/j.boyuan.issn0449-749x.20190213
    [10] Liu Z, Vakhrushev A, Wu M, et al. Effect of an electrically-conducting wall on transient magnetohydrodynamic flow in a continuous-casting mold with an electromagnetic brake[J]. Metals, 2018,8(8):609−623. doi: 10.3390/met8080609
    [11] Schurmann D, Glavinic´ I, Willers B, et al. Impact of the electromagnetic brake position on the flow structure in a slab continuous casting mold: An experimental parameter study[J]. Metall. Mater. Trans. B, 2020,51(1):61−78. doi: 10.1007/s11663-019-01721-x
    [12] Wang Y F, Zhang L F. Fluid flow-related transport phenomena in steel slab continuous casting strands under electromagnetic brake[J]. Metall. Mater. Trans. B, 2011,42(6):1319−1351. doi: 10.1007/s11663-011-9554-x
    [13] Jin K, Vanka S P, Thomas B G. Large eddy simulations of the effects of EMBr and SEN submergence depth on turbulent flow in the mold region of a steel caster[J]. Metall. Mater. Trans. B, 2017,48(1):162−178. doi: 10.1007/s11663-016-0801-z
    [14] Sarkar S, Singh V, Ajmani S K, et al. Effect of double ruler magnetic field in controlling meniscus flow and turbulence intensity distribution in continuous slab casting mold[J]. ISIJ Int., 2016,56(12):2181−2190. doi: 10.2355/isijinternational.ISIJINT-2016-313
    [15] Thomas B G, Singh R, Vanka S P, et al. Effect of single-ruler electromagnetic braking (EMBr) location on transient flow in continuous casting[J]. JMSP, 2015,15(1):93−104.
    [16] Yin Y B, Zhang J M. Mathematical modeling on transient multiphase flow and slag entrainment in continuously casting mold with double-ruler EMBr through LES+VOF+DPM method[J]. ISIJ Int., 2021,61(3):853−864. doi: 10.2355/isijinternational.ISIJINT-2020-592
    [17] Sarkar S, Singh V, Ajmani S K, et al. Effect of argon injection in meniscus flow and turbulence intensity distribution in continuous slab casting mold under the influence of double ruler magnetic field[J]. ISIJ Int., 2018,58(1):68−77. doi: 10.2355/isijinternational.ISIJINT-2017-448
    [18] Hernandez S G, Guzman C H G, Davila R M, et al. Modeling study of EMBr effects on the detrimental dynamic distortion phenomenon in a funnel thin slab mold[J]. Crystals, 2020,10(11):958−976. doi: 10.3390/cryst10110958
    [19] Li Z, Zhang L T, Ma D Z, et al. A narrative review: the electromagnetic field arrangement and the “braking” effect of electromagnetic brake (EMBr) technique in slab continuous casting[J]. Metall Res Technol., 2021,118(2):218−234. doi: 10.1051/metal/2021016
    [20] Cai Zhaozhen, Zhu Miaoyong. Simulation of thermal behavior during steel solidification in slab continuous casting mold[J]. Acta Metallurgica Sinica, 2011,47(6):678−687. (蔡兆镇, 朱苗勇. 板坯连铸结晶器内钢凝固过程热行为研究[J]. 金属学报, 2011,47(6):678−687.

    Cai Zhaozhen, Zhu Miaoyong. Simulation of thermal behavior during steel solidification in slab continuous casting mold[J]. Acta Metallurgica Sinica, 2011, 47(6): 678-687.
    [21] Gong Jiarui, Liu Zhongqiu, Wu Yingdong, et al. Transient movement and capture behavior of dispersed argon bubbles in continuous casting mold[J]. Journal of Iron and Steel Research, 2022,34(5):461−469. (宫佳睿, 刘中秋, 吴颖东, 等. 连铸结晶器内弥散氩气泡的瞬态运动和捕捉行为[J]. 钢铁研究学报, 2022,34(5):461−469.

    Gong Jiarui, Liu Zhongqiu, Wu Yingdong, et al. Transient movement and capture behavior of dispersed argon bubbles in continuous casting mold[J]. Journal of Iron and Steel Research, 2022, 34(5): 461-469.
    [22] Tian Guichang, Ji Chenxi, Gao Rongzheng, et al. Physical simulation of influence of mold nozzle structure on mold flux entrapment[J]. Steelmaking, 2021,37(6):38−44,58. (田贵昌, 季晨曦, 高荣正, 等. 连铸结晶器内水口结构对卷渣行为影响的物理模拟[J]. 炼钢, 2021,37(6):38−44,58.

    Tian Guichang, Ji Chenxi, Gao Rongzheng, et al. Physical simulation of influence of mold nozzle structure on mold flux entrapment[J]. Steelmaking, 2021, 37(6): 38-44, 58.
    [23] Deok K, Woo K, Kee C. Numerical simulation of the coupled turbulent flow and macroscopic solidification in continuous casting with electromagnetic brake[J]. ISIJ Int., 2000,40(7):670−676. doi: 10.2355/isijinternational.40.670
    [24] 刘中秋. 连铸结晶器内多相非均匀传递机制的多尺度模拟[D]. 沈阳: 东北大学, 2015.

    Liu Zhongqiu. Multi-scale modeling of multiphase and inhomogeneous transmission mechanisms in continuous casting mold [D]. Shenyang: Northeastern University, 2015.
    [25] Aboutalebi M, Hasan M, Guthrie R. Coupled turbulent flow, heat, and solute transport in continuous casting processes[J]. Metall. Mater. Trans. B, 1995,26(4):731−744. doi: 10.1007/BF02651719
    [26] Lait J, Brimacombe J, Weinberg F. Mathematical modeling of heat flow in the continuous casting of steel[J]. Ironmaking & Steelmaking, 1974,1(2):90−97.
    [27] Xu L, Wang E, Karcher C, et al. Numerical simulation of the effects of horizontal and vertical EMBr on jet flow and mold level fluctuation in continuous casting[J]. Metall. Mater. Trans. B, 2018,49(5):2779−2793. doi: 10.1007/s11663-018-1342-4
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  24
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-10
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回