留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GH5188合金塑性加工过程组织演变规律研究

郭续龙 蒋世川 戚慧琳 付建辉

郭续龙, 蒋世川, 戚慧琳, 付建辉. GH5188合金塑性加工过程组织演变规律研究[J]. 钢铁钒钛, 2023, 44(4): 142-148. doi: 10.7513/j.issn.1004-7638.2023.04.021
引用本文: 郭续龙, 蒋世川, 戚慧琳, 付建辉. GH5188合金塑性加工过程组织演变规律研究[J]. 钢铁钒钛, 2023, 44(4): 142-148. doi: 10.7513/j.issn.1004-7638.2023.04.021
Guo Xulong, Jiang Shichuan, Qi Huilin, Fu Jianhui. Research on microstructure evolution of GH5188 alloy during plastic processing[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 142-148. doi: 10.7513/j.issn.1004-7638.2023.04.021
Citation: Guo Xulong, Jiang Shichuan, Qi Huilin, Fu Jianhui. Research on microstructure evolution of GH5188 alloy during plastic processing[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 142-148. doi: 10.7513/j.issn.1004-7638.2023.04.021

GH5188合金塑性加工过程组织演变规律研究

doi: 10.7513/j.issn.1004-7638.2023.04.021
详细信息
    作者简介:

    郭续龙,1993年出生,男,山西吕梁人,硕士研究生,长期从事高温合金方面的基础研究工作,E-mail:799773653@qq.com

  • 中图分类号: TG132.3

Research on microstructure evolution of GH5188 alloy during plastic processing

  • 摘要: 利用Gleeble-3800热模拟试验机对GH5188高温合金进行了热变形行为及组织传递规律研究,在等温压缩试验中,获得了变形温度在980~1230 ℃,应变速率0.01~10 s−1,变形量10%~70%范围内GH5188高温合金的应力值,探究了不同温度和应变速率条件下的应力变化规律,建立了GH5188合金的本构关系模型,提出了优化的锻造工艺参数。结果表明,变形温度越高,流变应力越低,应变速率越大,流变应力越大;合金变形量不超过70%,锻造温度不超过1230 ℃,在1080~1180 ℃温度区间进行多次镦拔时,能够实现铸态组织的破碎细化;随着变形量的增加,在保温过程中合金更容易达到完全再结晶状态,且晶粒尺寸细化,然而,在持续保温过程中,晶粒尺寸则会逐渐长大。
  • 图  1  单道次压缩试验试样宏观形貌

    Figure  1.  Macro morphology of single-pass compression test specimen

    图  2  变形温度对应力应变曲线的影响

    Figure  2.  The influence of deformation temperature on stress-strain curve

    图  3  应变速率对应力应变曲线的影响

    Figure  3.  The influence of strain rate on stress-strain curve

    图  4  不同变量之间的线性拟合

    Figure  4.  Linear fit plot between different variables

    (a)$ \mathrm{ln}\dot{\epsilon } $-$ \mathrm{ln}\sigma $;(b)$ \mathrm{ln}\dot{\epsilon } $-$ \mathrm{\sigma } $;(c)$ \mathrm{ln}\dot{\epsilon } $-$ \mathrm{ln}\left[\mathrm{sinh}\left(\alpha \sigma \right)\right] $;(d)$ \mathrm{ln}\left[\mathrm{sinh}\left(\alpha \sigma \right)\right] $-T−1

    图  5  峰值应力试验值和计算值的比较

    Figure  5.  Comparison of peak stress between tested and calculated values

    图  6  GH5188合金不同变形条件下的显微组织

    Figure  6.  Microstructure of GH5188 alloy under different deformation conditions

    图  7  GH5188合金单道次变形20%和40%保温不同时间的显微组织

    Figure  7.  Microstructure of GH5188 alloy deformed in a single pass with 20% and 40% reduction and held for different time

    (a) 1 180 ℃-0.1 s−1-20%-0 s ; (b)1 180 ℃-0.1 s−1-20%-30 s ;(c)1 180 ℃-0.1 s−1-20%-60 s ; (d)1 180 ℃-0.1 s−1-20%-5 min ; (e)1 180 ℃-0.1 s−1-40%-0 s ; (f)1 180 ℃-0.1 s−1-40%-30 s ; (g)1 180 ℃-0.1 s−1-40%-60 s ; (h)1 180 ℃-0.1 s−1-40%-5 min

    表  1  GH5188棒材化学成分

    Table  1.   Chemical composition of GH5188 superalloy bar %

    CCrNiCoWFeBLaMnSiPSAlBiPbTi
    0.07821.02321.447余量13~160.4970.0029<0.40.8370.4300.0070<0.0010.054<0.001<0.0050.012
    下载: 导出CSV
  • [1] Shao Weidong, Tong Chaoshan, Zhuang Wei. Composition design, microstructure and properties of new cobalt-based superalloy[J]. Mechanical Engineering Materials, 2005,29(9):41-44. (邵卫东, 童潮山, 庄伟. 新型钴基高温合金成分设计及其组织与性能[J]. 机械工程材料, 2005,29(9):41-44.

    Shao Weidong, Tong Chaoshan, Zhuang Wei. Composition design, microstructure and properties of new cobalt-based superalloy[J]. Mechanical Engineering Materials, 2005, 29(9): 4.
    [2] Wang Zhongyuan, Zhang Weiqiang, Xin Xin, et al. Microstructure and homogenization process of GH188 alloy[J]. Journal of Shenyang University of Science and Technology, 2011,30(6):12-16. (王中原, 张伟强, 信昕, 等. GH188合金的微观组织和均匀化工艺[J]. 沈阳理工大学学报, 2011,30(6):12-16.

    Wang Zhongyuan, Zhang Weiqiang, Xin Xin, et al. Microstructure and homogenization process of GH188 alloy[J]. Journal of Shenyang University of Science and Technology, 2011, 30(6): 5.
    [3] Dong Yunpeng, Wang Chaoyuan, Song Xiaojun, et al. Research on rheological behavior of GH5188 alloy[J]. Forging Technology, 2013,38(6):116-121. (东赟鹏, 王超渊, 宋晓俊, 等. GH5188合金流变行为研究[J]. 锻压技术, 2013,38(6):116-121.

    Dong Yunpeng, Wang Chaoyuan, Song Xiaojun, et al. Research on rheological behavior of GH5188 alloy [J]. Forging Technology, 2013, 38(6): 16.
    [4] Yao Zhihao, Dong Jianxin, Zhang Maicang. Microstructure control and prediction during hot deformation of GH738 superalloy II. Validation and application of microstructure evolution model[J]. Acta Metallurgical Sinica, 2011,47(12):1581-1590. (姚志浩, 董建新, 张麦仓. GH738高温合金热变形过程显微组织控制与预测 II. 组织演化模型验证与应用[J]. 金属学报, 2011,47(12):1581-1590.

    Yao Zhihao, Dong Jianxin, Zhang Maicang. Microstructure control and prediction during hot deformation of GH738 superalloy II. Validation and application of microstructure evolution model[J]. Acta Metallurgical Sinica, 2011, 47(12): 10.
    [5] Yuan Zhizhong, Cui Shugang, Luo Rui, et al. High-temperature constitutive model and microstructure evolution of 57Ni-22Cr-14W-2Mo superalloy[J]. Chinese Journal of Plasticity Engineering, 2020,(11):151−158. (袁志钟, 崔树刚, 罗锐, 等. 57Ni-22Cr-14W-2Mo高温合金的高温本构模型及微观组织演化[J]. 塑性工程学报, 2020,(11):151−158. doi: 10.3969/j.issn.1007-2012.2020.11.023

    Yuan Zhizhong, Cui Shugang, Luo Rui, et al. High-temperature constitutive model and microstructure evolution of 57 Ni-22 Cr-14 W-2 Mo superalloy[J]. Chinese Journal of Plasticity Engineering, 2020, (11): 151-158 doi: 10.3969/j.issn.1007-2012.2020.11.023
    [6] Zhou Haiping, Zhang Hongbin, Liu Jie, et al. Prediction of hot deformation flow stress of nickel-based superalloy based on dynamic recrystallization kinetic equation (English)[J]. Rare Metal Materials and Engineering, 2018,(11):3329−3337. (周海萍, 张弘斌, 刘杰, 等. 基于动态再结晶动力学方程的镍基高温合金热变形流变应力预测(英文)[J]. 稀有金属材料与工程, 2018,(11):3329−3337.

    Zhou Haiping, Zhang Hongbin, Liu Jie, et al. Prediction of hot deformation flow stress of nickel-based superalloy based on dynamic recrystallization kinetic equation (English) [J]. Rare Metal Materials and Engineering, 2018, (11): 3329-3337.
    [7] Yang Qingbo, Deng Yanjun, Yang Mou, et al. The effect of Al3Zr particles on the hot deformation behavior and processing map of AlCuLi-based alloys at high temperatures[J]. The Chinese Journal of Nonferrous Metals:English Edition, 2020,30(4):872-882. (杨庆波, 邓燕君, 杨谋, 等. 高温下Al3Zr颗粒对AlCuLi基合金的热变形行为以及加工图的影响[J]. 中国有色金属学报:英文版, 2020,30(4):872-882.

    Yang Qingbo, Deng Yanjun, Yang Mou, et al. The effect of Al3 Zr particles on the hot deformation behavior and processing map of AlCuLi-based alloys at high temperatures[J]. The Chinese Journal of Nonferrous Metals: English Edition, 2020, 30(4): 11.
    [8] Kong Yonghua, Chang Pengpeng, Li Qian, et al. Hot deformation characteristics and processing map of nickel-based C276 superalloy[J]. Journal of Alloys & Compounds, 2015,622:738−744.
    [9] Zhang Dongxu, Wen Zhixun, Yue Zhufeng. Research on hot deformation behavior and constitutive model of GH3230 superalloy[J]. Rare Metals, 2014,(6):986−992. (张冬旭, 温志勋, 岳珠峰. GH3230高温合金热变形行为及本构模型研究[J]. 稀有金属, 2014,(6):986−992. doi: 10.13373/j.cnki.cjrm.2014.06.008

    Zhang Dongxu, Wen Zhixun, Yue Zhufeng. Research on hot deformation behavior and constitutive model of GH3230 superalloy[J]. Rare Metals, 2014, (6): 986-992 doi: 10.13373/j.cnki.cjrm.2014.06.008
    [10] Li Sha, Miao Huajun, Jin Xianzhe, et al. Research on hot deformation behavior and microstructure evolution of new nickel-based superalloy GH4700[J]. Casting Technology, 2013,34(8):953-957. (李莎, 苗华军, 金宪哲, 等. 新型镍基高温合金GH4700热变形行为及组织演变研究[J]. 铸造技术, 2013,34(8):953-957.

    Li Sha, Miao Huajun, Jin Xianzhe, et al. Research on hot deformation behavior and microstructure evolution of new nickel-based superalloy GH4700 [J]. Casting Technology, 2013, 34(8): 5.
    [11] Li Fulin, Fu Rui, Feng Di, et al. Study on hot deformation behavior of nickel-based wrought superalloy CDS&W FGH96[J]. Rare Metals, 2015,39(3):201-206. (李福林, 付锐, 冯涤, 等. 镍基变形高温合金CDS&W FGH96热变形行为研究[J]. 稀有金属, 2015,39(3):201-206.

    Li Fulin, Fu Rui, Feng Di, et al. Study on hot deformation behavior of nickel-based wrought superalloy CDS&W FGH96 [J]. Rare Metals, 2015, 39(3): 6.
    [12] Wu Zhigang, Li Defu, Guo Shengli, et al. Effect of deformation conditions on dynamic recrystallization of GH625 alloy under high temperature deformation[J]. Rare Metals, 2010, 34,(6):833-838. (吾志岗, 李德富, 郭胜利, 等. 变形条件对GH625合金高温变形动态再结晶的影响[J]. 稀有金属, 2010, 34,(6):833-838.

    Wu Zhigang, Li Defu, Guo Shengli, et al. Effect of deformation conditions on dynamic recrystallization of GH625 alloy under high temperature deformation [J]. Rare Metals, 2010(6): 6.
    [13] Wang Zhongtang, Deng Yonggang, Zhang Shihong. Critical conditions for dynamic recrystallization of superalloy Inconel 690 based on work hardening rate[J]. Journal of Materials Heat Treatment, 2014,35(7):193−197. (王忠堂, 邓永刚, 张士宏. 基于加工硬化率的高温合金Inconel 690动态再结晶临界条件[J]. 材料热处理学报, 2014,35(7):193−197.

    Wang Zhongtang, Deng Yonggang, Zhang Shihong. Critical conditions for dynamic recrystallization of superalloy Inconel 690 based on work hardening rate[J]. Journal of Materials Heat Treatment, 2014(7): 5.
    [14] Guo Shengli, Li Defu, Pen Haijia, et al. Hot deformation and processing maps of Inconel 690 superalloy[J]. Journal of Nuclear Materials, 2011,410(1-3):52−58. doi: 10.1016/j.jnucmat.2010.12.309
    [15] Chen Xiaomin, Wen Dongxu. Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation-science direct[J]. Materials & Design, 2014,57(5):568−577.
    [16] Wu Kai, Liu Guoquan, Hu Benfu, et al. Hot compressive deformation behavior of a new hot isostatically pressed Ni–Cr–Co based powder metallurgy superalloy[J]. Materials & Design, 2011,32(4):1872−1879.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  18
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-16
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回