留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同钒、氮含量对Nb-V微合金化高强抗震钢筋组织和性能的影响

路洁 苏其响 黄吉祥 张欢欢 雷霆 阴树标 马正洪

路洁, 苏其响, 黄吉祥, 张欢欢, 雷霆, 阴树标, 马正洪. 不同钒、氮含量对Nb-V微合金化高强抗震钢筋组织和性能的影响[J]. 钢铁钒钛, 2023, 44(4): 149-157. doi: 10.7513/j.issn.1004-7638.2023.04.022
引用本文: 路洁, 苏其响, 黄吉祥, 张欢欢, 雷霆, 阴树标, 马正洪. 不同钒、氮含量对Nb-V微合金化高强抗震钢筋组织和性能的影响[J]. 钢铁钒钛, 2023, 44(4): 149-157. doi: 10.7513/j.issn.1004-7638.2023.04.022
Lu Jie, Su Qixiang, Huang Jixiang, Zhang Huanhuan, Lei Ting, Yin Shubiao, Ma Zhenghong. Effect of different vanadium and nitrogen contents on microstructure and properties of Nb-V microalloyed high-strength seismic reinforcement[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 149-157. doi: 10.7513/j.issn.1004-7638.2023.04.022
Citation: Lu Jie, Su Qixiang, Huang Jixiang, Zhang Huanhuan, Lei Ting, Yin Shubiao, Ma Zhenghong. Effect of different vanadium and nitrogen contents on microstructure and properties of Nb-V microalloyed high-strength seismic reinforcement[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 149-157. doi: 10.7513/j.issn.1004-7638.2023.04.022

不同钒、氮含量对Nb-V微合金化高强抗震钢筋组织和性能的影响

doi: 10.7513/j.issn.1004-7638.2023.04.022
基金项目: 国家自然科学基金资助项目(51864025)。
详细信息
    作者简介:

    苏其响,1995年出生,男,浙江温州人,硕士研究生,研究方向:钢铁材料, E-mail:875665157@qq.com

    通讯作者:

    阴树标,1977年出生,男,河北衡水人,博士,副教授,研究方向:钢铁冶金和材料,E-mail:278912571@qq.com

  • 中图分类号: TF76,TU511

Effect of different vanadium and nitrogen contents on microstructure and properties of Nb-V microalloyed high-strength seismic reinforcement

  • 摘要: 钒和氮可有效提高Nb-V微合金化高强抗震钢筋的综合性能。采用金相显微镜、扫描电镜、透射电镜、力学试验机等对三种不同钒、氮含量的Nb-V微合金化高强抗震钢筋的显微组织进行表征和测试。结果表明,三种试验钢的最终显微组织均为铁素体+珠光体+少量贝氏体。随着试验钢中钒、氮含量增加,其铁素体晶粒尺寸减小,珠光体片层间距逐渐细化。析出相NbV(C,N)随钒、氮含量的增加,沉淀析出的第二相颗粒体积分数增大,颗粒尺寸减小。试验钢断口形貌均为韧窝断裂,随着钒、氮含量增加,其韧窝加深,口径变大。在力学性能方面,抗拉强度逐渐升高,屈服强度和硬度略微下降而后增强。
  • 图  1  三种钢筋不同区域的金相组织

    F-铁素体; P-珠光体; B-贝氏体(a)1#心部;(b)2#心部;(c)3#心部;(d)1#边部;(e)2#边部;(f)3#边部

    Figure  1.  Metallographic structure of different areas of three kinds of reinforcement

    图  2  三种试验钢铁素体晶粒尺寸

    Figure  2.  Ferric grain sizes of three test steels

    图  3  三种试验钢不同组织心部、边部占比

    Figure  3.  The proportion of core and edge of different tissues of three test steels

    图  4  三种钢筋不同区域的SEM形貌

    (a)1#心部;(b)2#心部;(c)3#心部;(d)1#边部;(e)2#边部;(f)3#边部

    Figure  4.  SEM morphology of different areas of three kinds of reinforcement

    图  5  三种钢筋的析出相形貌

    (a)1#心部;(b)2#心部;(c)3#心部

    Figure  5.  Microstructure of precipitated phase of three kinds of reinforcement

    图  6  试验钢析出相的形貌及能谱分析

    (a)析出相形貌;(b)析出相能谱

    Figure  6.  Morphology and energy spectrum of precipitation phase in test steel

    图  7  三种试验钢分布的 TEM 暗场像

    (a)1#心部;(b)2#心部;(c)3#心部

    Figure  7.  TEM dark field image of three kinds of test steels

    图  8  三种试验钢的应力-应变曲线

    Figure  8.  Stress-strain curves of three test steels

    图  9  三种试验钢拉伸断口形貌

    (a)1#心部;(b)2#心部;(c)3#心部;(d)1#边部;(e)2#边部;(f)3#边部

    Figure  9.  Tensile fracture morphology of three test steels

    图  10  三种试验钢强化机制计算结果

    Figure  10.  Calculation results of strengthening mechanism of three test steels

    表  1  三种试验钢的主要化学成分

    Table  1.   Main chemical composition of three experimental steels %

    编号CSiMnPSVNbN
    1#0.230.491.440.0280.0180.0660.0120.0169
    2#0.230.531.500.0220.0200.0780.0120.0186
    3#0.260.721.520.0210.0060.1490.0120.0223
    下载: 导出CSV

    表  2  三种试验钢的力学性能

    Table  2.   Mechanical properties of three experimental steels

    编号Rm/MPaReL/MPaRm/ReLA/%Agt/%心部硬度(HV)
    1#7255701.2721.5316.40285
    2#7705651.3621.6312.50282
    3#8256501.2725.1614.20286
    下载: 导出CSV
  • [1] Zhou Yun, Yang Xiaowei, Chen Huande, et al. Effect of heating temperature on microstructure and properties of 600 MPa grade high strength steel rebars[J]. Iron & Steel, 2020,55(1):101−107. (周云, 杨晓伟, 陈焕德, 等. 加热温度对600 MPa级高强钢筋组织及性能的影响[J]. 钢铁, 2020,55(1):101−107.

    Zhou Yun, Yang Xiaowei, Chen Huande, et al. Effect of heating temperature on microstructure and properties of 600 MPa grade high strength steel rebars[J]. Iron & steel, 2020, 55(1): 101-107.
    [2] Wang Y, Guo C H, Chen X J, et al. Carbon peak and carbon neutrality in China: Goals, implementation path and prospects[J]. China Geology, 2021,4(4):720−746.
    [3] Zhang W L, Wang J, Sun H T. A primary school teaching building aseismic reinforcement application analysis[C]//Proceedings of 2017 2nd International Conference on Information Technology and Management Engineering. Beijing: Science and Engineering Research Center, 2017: 180-184.
    [4] Yang H Y, Ma Z C, Lei C H, et al. High strength and high conductivity Cu alloys: A review[J]. Science China (Technological Sciences), 2020,63(12):2505−2517. doi: 10.1007/s11431-020-1633-8
    [5] Zhou Mengsha, Liu Xing, Chen Wei, et al. Effect of N content on' microstructure and properties of Nb microalloyed HRB400E steel bar[J]. Journal of Iron and Steel Research, 2022,34(8):848−858. (周梦莎, 刘星, 陈伟, 等. N含量对Nb微合金化HRB400E钢筋组织与性能的影响[J]. 钢铁研究学报, 2022,34(8):848−858.

    Zhou Mengsha, Liu Xing, Chen Wei, et al. Effect of N content on' microstructure and properties of Nb microalloyed HRB400 E steel bar[J]. Journal of Iron and Steel Research, 2022, 34(8): 848-858.
    [6] Wang Xiaodong, Chen Yunbo, Zuo Lingli, et al. V-N microalloying of CrSiMn low-alloy cast steel[J]. Heat Treatment of Metals, 2021,46(8):15−20. (王晓东, 陈蕴博, 左玲立, 等. V-N微合金化CrSiMn系低合金铸钢中的析出行为[J]. 金属热处理, 2021,46(8):15−20.

    Wang Xiaodong, Chen Yunbo, Zuo Lingli, et al. V-N microalloying of CrSiMn low-alloy cast steel[J]. Heat Treatment of Metals, 2021, 46(8): 15-20.
    [7] Hutchinson Bevis. Different roles for vanadium as a microalloying element in structural steels[J]. Journal of Iron and Steel Research (International), 2011,18(S1):29−38.
    [8] Peng Xiong, Xiao Ya, Wang Shaobin, et al. Development of V-N alloyed hot rolled ribbed bar HRB400E[J]. China Metallurgy, 2019,29(1):25−29. (彭雄, 肖亚, 王绍斌, 等. 钒氮合金化热轧抗震钢筋HRB400E产品开发[J]. 中国冶金, 2019,29(1):25−29.

    Peng Xiong, Xiao Ya, Wang Shaobin, et al. Development of V-N alloyed hot rolled ribbed bar HRB400 E[J]. China Metallurgy, 2019, 29(1): 25-29.
    [9] 蒋小冬. 屈服强度390 MPa级低合金钢的组织演变与力学性能研究[D]. 沈阳: 东北大学, 2015.

    Jiang Xiaodong. Study on microstructure evolution and mechanical properties of low alloy steel with yield strength of 390 MPa[D]. Shenyang: Northeastern University, 2015.
    [10] Qiao Zhixia, Liu Yongchang. Phase transformation and microstructural control of low alloyed ultra-high strength steels[J]. Heat Treatment of Metals, 2015,40(1):12−22. (乔志霞, 刘永长. 低合金超高强度钢中的相变及组织控制[J]. 金属热处理, 2015,40(1):12−22.

    Qiao Zhixia, Liu Yongchang. Phase transformation and microstructural control of low alloyed ultra-high strength steels[J]. Heat Treatment of Metals, 2015, 40(1): 12-22.
    [11] Pan H B, Zhang M J, Liu W M, et al. Effects of micro-alloying and production process on precipitation behaviors and mechanical properties of HRB600[J]. Journal of Iron and Steel Research (International), 2017,24(5):536−543. doi: 10.1016/S1006-706X(17)30081-X
    [12] Cao Jianchun, Ye Yaping, Yin Shubiao, et al. Continuous cooling transformation of austenite during deformation of niobium microalloyed seismic reinforcement[J]. Iron & Steel, 2019,54(12):81−88. (曹建春, 叶亚平, 阴树标, 等. 铌微合金化抗震钢筋形变奥氏体连续冷却转变[J]. 钢铁, 2019,54(12):81−88.

    Chao Jianchun, Ye Yaping, Yin Shubiao, et al. Continuous cooling transformation of austenite during deformation of niobium microalloyed seismic reinforcement[J]. Iron & steel, 2019, 54(12): 81-88.
    [13] 刘建, 李月丽. 钒氮微合金化对汽车用热轧钢板组织与力学性能的影响[J]. 塑性工程学报, 2022, 29(3): 150-156.

    Liu Jian, Li Yueli. Effect of vanadium nitrogen microalloying on microstructure and mechanical properties of hot rolled steel sheet for automobile[J]. Journal of Plasticity Engineering, 202, 29(3): 150-156
    [14] Chen X W, Liao B, Qiao G Y, et al. Effect of Nb on mechanical properties of HAZ for high-Nb X80 pipeline steels[J]. Journal of Iron and Steel Research (International), 2013,20(12):53−60. doi: 10.1016/S1006-706X(13)60216-2
    [15] Cao Lei, Yang Zhongming, Chen Ying, et al. Effect of nitrogen on the microstructure evolution in 20MnSi steel bearing with niobium[J]. Iron & Steel, 2015,50(11):75−80. (曹磊, 杨忠民, 陈颖, 等. 氮对含铌20MnSi钢组织演变的影响[J]. 钢铁, 2015,50(11):75−80.

    Cao Lei, Yang Zhongming, Chen Ying, et al. Effect of nitrogen on the microstructure evolution in 20 MnSi steel bearing with niobium[J]. Iron & Steel, 2015, 50(11): 75-80.
    [16] Yang Caifu. Recent development and applications of vanadium microalloying technology[J]. Journal of Iron and Steel Research, 2020,32(12):1029−1043. (杨才福. 钒微合金化钢的技术进展与应用[J]. 钢铁研究学报, 2020,32(12):1029−1043.

    Yang Caifu. Recent development and applications of vanadium microalloying technology[J]. Journal of Iron and Steel Research, 2020, 32(12): 1029-1043.
    [17] Li Zhiying, Li Changrong, Zeng Zeyun, et al. Thermodynamic study of carbide and nitride precipitation of niobium in 500MPa high-strength anti-seismic rebars[J]. Journal of Iron and Steel Research, 2020,32(8):727−733. (黎志英, 李长荣, 曾泽芸, 等. 高强抗震钢筋中铌的碳、氮化物析出热力学研究[J]. 钢铁研究学报, 2020,32(8):727−733.

    Li Zhiying, Li Changrong, Zeng Zeyun, et al. Thermodynamic study of carbide and nitride precipitation of niobium in 500 MPa high-strength anti-seismic rebars[J]. Journal of Iron and Steel Research, 2020, 32(8): 727-733.
    [18] Li Baoxiu. Effect of nitrogen content 500E seismic reinforcement 20MnVN on microstructure and properties[J]. Special Steel, 2016,37(5):59−61. (李宝秀. 氮含量500E抗震钢筋20MnVN组织和性能的影响[J]. 特殊钢, 2016,37(5):59−61.

    Li Baoxiu. Effect of nitrogen content 500 E seismic reinforcement 20 MnVN on microstructure and properties[J]. Special Steel, 2016, 37(5): 59-61.
    [19] Zhai Yongzhen, Xia Hao, Zhang Xin, et al. Effect of nitrogen content on microstructure and mechanical properties of V-N microalloyed high-strength reinforcement[J]. Heat Treatment of Metals, 2018,43(8):31−35. (翟永臻, 夏昊, 张昕, 等. 氮含量对V-N微合金化高强钢筋微观组织及力学性能的影响[J]. 金属热处理, 2018,43(8):31−35.

    Zhai Yongzhen, Xia Hao, Zhang Xin, et al. Effect of nitrogen content on microstructure and mechanical properties of V-N microalloyed high-strength reinforcement[J]. Heat Treatment of Metals, 2018, 43(8): 31-35.
    [20] Tian Zhun, Yuan Xiaomin. Effect of low temperature tempering process on microstructure and mechanical properties of 1100 MPa grade high strength steel[J]. Heat Treatment, 2015,30(4):21−25. (田准, 袁晓敏. 低温回火工艺对1100 MPa级高强钢组织和力学性能的影响[J]. 热处理, 2015,30(4):21−25.

    Tian Zhun, Yuan Xiaomin. Effect of low temperature tempering process on microstructure and mechanical properties of 1100 MPa grade high strength steel[J]. Heat Treatment, 2015, 30(4): 21-25.
    [21] Yang Jichun, Zhang Jian, Li Hongwei. Influent of vanadium on microstructure and properties of highnitrogen 20MnSi steel[J]. Iron Steel Vanadium Titanium, 2015,36(1):43−47. (杨吉春, 张剑, 栗宏伟, 等. 钒对高氮20MnSi螺纹钢组织和性能的影响研究[J]. 钢铁钒钛, 2015,36(1):43−47.

    Yang Jichun, Zhang Jian, Li Hongwei. Influent of vanadium on microstructure and properties of highnitrogen 20 MnSi steel[J]. Iron Steel Vanadium Titanium, 2015, 36(1): 43-47.
    [22] Hu Xiaoxuan, Wang Ruizhen, Zhou Yun, et al. Effect of vanadium and nitrogen content on microstructure and properties of wear resistant steel NM400[J]. Iron & Steel, 2014,49(10):89−94. (胡筱旋, 王瑞珍, 周芸, 等. 钒, 氮含量对耐磨钢NM400组织及性能的影响[J]. 钢铁, 2014,49(10):89−94.

    Hu Xiaoxuan, Wang Ruizhen, Zhou Yun, et al. Effect of vanadium and nitrogen content on microstructure and properties of wear resistant steel NM400[J]. Iron & Steel, 2014, 49(10): 89-94.
    [23] Wu Hualin, Wang Fuming, Li Changrong, et al. Effect of Nb on the precipitated phases of MX in switch K2 spring steel[J]. Journal of Beijing University of Science and Technology, 2011,33(8):927−935. (吴华林, 王福明, 李长荣, 等. Nb对转K2弹簧钢中MX析出相的影响[J]. 北京科技大学学报, 2011,33(8):927−935.

    Wu Hualin, Wang Fuming, Li Changrong, et al. Effect of Nb on the precipitated phases of MX in switch K2 spring steel[J]. Journal of Beijing University of Science and Technology, 2011, 33(8): 927-935.
    [24] Pang Q H, Guo J, Li W J, et al. Complex precipitation mechanism of Ti -Nb-V microalloyed bainitic base high strength steel[J]. Journal of Wuhan University of Technology (Materials Science), 2019,34(6):1444−1450. doi: 10.1007/s11595-019-2211-y
    [25] Qin Xiangzhi, Lv Yuan, Xie Guoqing, et al. Effect of Mn on microstructure and mechanical properties of ultra-low carbon Ti microalloyed SM490A steel[J]. Iron Steel Vanadium Titanium, 2020,41(4):121−124. (秦翔智, 吕远, 谢国庆, 等. Mn对超低碳Ti微合金化SM490A钢显微组织与力学性能的影响[J]. 钢铁钒钛, 2020,41(4):121−124.

    Qin Xiangzhi, Lv Yuan, Xie Guoqing, et al. Effect of Mn on microstructure and mechanical properties of ultra-low carbon Ti microalloyed SM490 A steel[J]. Iron Steel Vanadium Titanium, 2020, 41(4): 121-124.
    [26] Hutchinson Bevis. Different roles for vanadium as a microalloying element in structural steels[J]. Journal of Iron and Steel Research, 2011,18(201):29−38.
    [27] Xue Z L, Li Z B, Zhang J W, et al. Effect of adding nitrogen on microstructure and property of vanadium microalloyed reinforcing bar steel[J]. Journal of Iron and Steel Research, 2003,(2):45−50.
    [28] Zhang J, Wang F M, Li C R. Kinetics and formation mechanisms of intragranular ferrite in V-N microalloyed 600 MPa high strength rebar steel[J]. International Journal of Minerals, Metallurgy and Materials, 2016,23(4):417−424. doi: 10.1007/s12613-016-1251-y
    [29] 翁建寅, 董瀚, 李北, 等. N含量对高氮CrMnMo奥氏体不锈钢组织和性能的影响[J]. 金属热处理, 2020, 45(1): 160-163.

    Weng Jianyin, Dong Han, Li Bei, et al. Effect of N content on microstructure and properties of CrMnMo austenitic stainless steel[J]. Heat Treatment of Metals, 20, 45(1): 160-163.
    [30] 沈聪, 孔令男, 尹臣男, 等. 基于Q-P-C-T工艺的NM300耐磨钢组织、综合性能及残余应力调控[J]. 中南大学学报(自然科学版), 2022, 53(4): 1231-1240.

    Shen Cong, Kong Lingnan, Yi Chengnan, et al. Microstructure, comprehensive properties and residual stress control of NM300 wear-resistant steel based on Q-P-C-T process[J]. Journal of Central South University (Science and Technology), 2022, 53(4): 1231-1240.
    [31] Wang Shujing, Wang Tonghao, Wang Jian, et al. Effect of B-Ce composite microalloying on microstructure and mechanical properties of S31254 super austenitic stainless steel[J]. Heat Treatment of Metals, 2022,47(2):14−19. (王舒镜, 王同浩, 王剑, 等. B-Ce复合微合金化对S31254超级奥氏体不锈钢组织和力学性能的影响[J]. 金属热处理, 2022,47(2):14−19.

    Wang Shujing, Wang Tonghao, Wang Jian, et al. Effect of B-Ce composite microalloying on microstructure and mechanical properties of S31254 super austenitic stainless steel[J]. Heat Treatment of Metals, 2022, 47(2): 14-19.
    [32] Wang Changjun, Yong Qilong, Sun Xinjun, et al. Effects of Ti and Mn content on precipitation characteristics and strengthening mechanism of CSP Ti microalloyed steel[J]. Acta Metallurgica Sinica, 2011,47(12):1541−1549. (王长军, 雍岐龙, 孙新军, 等. Ti和Mn含量对CSP工艺Ti微合金钢析出特征与强化机理的影响[J]. 金属学报, 2011,47(12):1541−1549.

    Wang Changjun, Yong Qilong, Sun Xinjun, et al. Effects of Ti and Mn content on precipitation characteristics and strengthening mechanism of CSP Ti microalloyed steel[J]. Acta Metallurgica Sinica, 2011, 47(12): 1541-1549.
    [33] Zhang L, Song R K, Qu G X, et al. Effect of nitrogen on microstructure and mechanical properties of CrMnFeVTi6 high entropy alloy[J]. Transactions of Nonferrous Metals Society of China, 2021,31(8):2415−2427. doi: 10.1016/S1003-6326(21)65663-7
    [34] Li Long, Ding Hua, Yang Chunzhen, et al. Effect of controlled rolling and cooling process on microstructure and properties of low carbon niobium microalloyed steel[J]. Journal of Iron and Steel Research, 2006,18(7):46−51. (李龙, 丁桦, 杨春征, 等. 控轧控冷工艺对低碳铌微合金钢组织和性能的影响[J]. 钢铁研究学报, 2006,18(7):46−51.

    Li Long, Ding Hua, Yang Chunzhen, et al. Effect of controlled rolling and cooling process on microstructure and properties of low carbon niobium microalloyed steel[J]. Journal of Iron and Steel Research, 2006, 18(7): 46-51.
    [35] 米永峰. VN微合金化500 MPa级高强抗震钢筋工艺研究[D]. 昆明: 昆明理工大学, 2011.

    Mi Yongfeng. Research on technology of VN microalloying 500 MPa high strength seismic reinforcement[D]. Kunming: Kunming University of Science and Technology, 2011.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  29
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-04
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回