留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钒微合金化汽车用铸造镁合金的组织与性能

高亚男 郑镭 张全逾

高亚男, 郑镭, 张全逾. 钒微合金化汽车用铸造镁合金的组织与性能[J]. 钢铁钒钛, 2023, 44(4): 190-195. doi: 10.7513/j.issn.1004-7638.2023.04.027
引用本文: 高亚男, 郑镭, 张全逾. 钒微合金化汽车用铸造镁合金的组织与性能[J]. 钢铁钒钛, 2023, 44(4): 190-195. doi: 10.7513/j.issn.1004-7638.2023.04.027
Gao Yanan, Zheng Lei, Zhang Quanyu. Microstructure and properties of vanadium microalloyed cast magnesium alloy for automobile[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 190-195. doi: 10.7513/j.issn.1004-7638.2023.04.027
Citation: Gao Yanan, Zheng Lei, Zhang Quanyu. Microstructure and properties of vanadium microalloyed cast magnesium alloy for automobile[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 190-195. doi: 10.7513/j.issn.1004-7638.2023.04.027

钒微合金化汽车用铸造镁合金的组织与性能

doi: 10.7513/j.issn.1004-7638.2023.04.027
基金项目: 河北省高等学校科学技术研究重点项目(项目编号:ZD2016113)。
详细信息
    作者简介:

    高亚男,1982年出生,男,汉族,河北承德人,博士,副教授,主要从事金属塑性成形、汽车关键零部件结构设计等方面的研究,E-mail:llovr@163.com

    通讯作者:

    张全逾,1980年出生,男,汉族,河北承德人,硕士研究生,副教授,从事汽车方面的教学与科研工作,E-mail:llovr@163.com

  • 中图分类号: TF822,TG136

Microstructure and properties of vanadium microalloyed cast magnesium alloy for automobile

  • 摘要: 为了研究钒微合金化汽车用铸造镁合金的显微组织、耐磨损性能和耐腐蚀性能,在铸造Mg-9Al-1Zn镁合金中添加了不同含量的合金元素钒,并进行了试验合金显微组织、力学性能、耐磨损性能和耐腐蚀性能的测试与对比分析。结果表明,合金元素钒可以有效细化合金内部组织,提高合金的耐磨损性能和耐腐蚀性能。随钒含量由0逐渐增加到0.4%时,试验合金的耐磨损性能和耐腐蚀性能均提高,进一步将钒含量增加到0.5%,则两种性能均开始下降。同不含钒的Mg-9Al-1Zn镁合金相比,当在Mg-9Al-1Zn镁合金中添加0.4%合金元素钒时,合金的磨损体积减小了12.7×10−3 mm3,减小幅度达29.8%;腐蚀电位正移了0.107 V,正移幅度达到12.2%;抗拉强度、屈服强度和断后伸长率分别增大58、58 MPa、3.3%,增大幅度分别为20.9%、36.0%、40.2%。Mg-9Al-1Zn-V镁合金的合金元素钒含量优选为0.4%。
  • 图  1  Mg-9Al-1Zn-xV(x=0,0.1,0.2,0.3,0.4,0.5)试验合金显微组织金相照片

    (a)1#试样(x=0);(b)2#试样(x=0.1);(c)3#试样(x=0.2);(d)4#试样(x=0.3);(e)5#试样(x=0.4);(f)6#试样(x=0.5)

    Figure  1.  Microstructure of Mg-9Al-1Zn-xV (x=0,0.1,0.2,0.3,0.4,0.5) test alloys

    图  2  Mg-9Al-1Zn-xV(x=0,0.1,0.2,0.3,0.4,0.5)试验合金显微组织SEM照片

    (a) 1#试样(x=0); (b) 2#试样(x=0.1); (c)3#试样(x=0.2); (d) 4#试样(x=0.3); (e)5#试样(x=0.4); (f) 6#试样(x=0.5)

    Figure  2.  SEM photos of Mg-9Al-1Zn-xV (x=0,0.1,0.2,0.3,0.4,0.5) test alloys

    图  3  Mg-9Al-1Zn-xV(x=0,0.1,0.2,0.3,0.4,0.5)试验合金力学性能测试结果

    Figure  3.  Mechanical properties of Mg-9Al-1Zn-xV(x=0,0.1,0.2,0.3,0.4,0.5)test alloys

    表  1  Mg-9Al-1Zn-xV (x=0,0.1,0.2,0.3,0.4,0.5)试验合金化学成分

    Table  1.   Chemical compositions of Mg-9Al-1Zn-xV (x=0,0.1,0.2,0.3,0.4,0.5) test alloys %

    试样编号V含量AlZnMnVFeSi其他杂质元素Mg
    1#x=09.0340.9980.23100.0120.008<0.100余量
    2#x=0.19.0280.9960.2280.1040.0110.009<0.100余量
    3#x=0.29.0290.9970.2290.2020.0090.007<0.100余量
    4#x=0.39.0311.0020.2320.2980.0110.008<0.100余量
    5#x=0.49.0270.9990.2340.4030.0120.009<0.100余量
    6#x=0.59.0320.9980.2280.5010.0130.008<0.100余量
    下载: 导出CSV

    表  2  Mg-9Al-1Zn-xV(x=0,0.1,0.2,0.3,0.4,0.5) 试验合金耐磨损与耐腐蚀性能测试结果

    Table  2.   Wear resistance and corrosion resistance test results of Mg-9Al-1Zn-xV(x=0,0.1,0.2,0.3,0.4,0.5) tested alloys

    钒含量/%磨损体积×103/mm3腐蚀电位/V
    042.6−0.876
    0.138.1−0.828
    0.234.7−0.803
    0.332.6−0.791
    0.429.9−0.769
    0.531.4−0.814
    下载: 导出CSV
  • [1] Yue Haiyan, Fu Penghuai, Xu Xuwen, et al. Cumulative damage behavior study of high cycle fatigue of as-cast Mg-3.0Nd-0.2Zn-Zr alloy[J]. Journal of Materials Science and Engineering, 2020,38(5):693−700. (岳海燕, 付彭怀, 徐旭文, 等. 铸造Mg-3.0Nd-0.2Zn-Zr镁合金高周疲劳累积损伤行为[J]. 材料科学与工程学报, 2020,38(5):693−700.

    Yue Haiyan, Fu Penghuai, Xu Xuwen, et al. Cumulative damage behavior study of high cycle fatigue of as-cast Mg-3.0Nd-0.2Zn-Zr alloy[J]. Journal of Materials Science and Engineering, 2020, 38(5): 693-700. )
    [2] Yue Haiyan, Fu Penghuai, Hu Bin, et al. Application of two-step aging treatment in cast Mg-3Nd-0.2Zn-Zr alloy[J]. Journal of Materials Science and Engineering, 2020,38(4):517−524. (岳海燕, 付彭怀, 胡斌, 等. 双级时效在铸造Mg-3Nd-0.2Zn-Zr镁合金中的应用[J]. 材料科学与工程学报, 2020,38(4):517−524.

    Yue Haiyan, Fu Penghuai, Hu Bin, et al. Application of two-step aging treatment in cast Mg-3 Nd-0.2 Zn-Zr alloy[J]. Journal of Materials Science and Engineering, 2020, 38(4): 517-524.
    [3] Huang Fang, Xu Yang. Effect of pouring temperature on microstructure and properties of new vanadium microalloyed casting magnesium alloy[J]. Iron Steel Vanadium Titanium, 2020,41(1):65−69. (黄芳, 徐扬. 浇注温度对新型钒微合金化铸造镁合金组织与性能的影响[J]. 钢铁钒钛, 2020,41(1):65−69.

    Huang Fang, Xu Yang. Effect of pouring temperature on microstructure and properties of new vanadium microalloyed casting magnesium alloy[J]. Iron Steel Vanadium Titanium, 2020, 41(1): 65-69.
    [4] Chen Rongshi, Zhou Bo, Li Jilin, et al. Contrast of microstructure, mechanical properties and casting defects between high strength and heat resistant Mg-Y-Nd(-Gd)-Zr and Mg-Gd-Y-Zr magnesium alloys[J]. Foundry, 2021,70(1):15−20. (陈荣石, 周波, 李吉林, 等. 铸造高强耐热Mg-Y-Nd(-Gd)-Zr和Mg-Gd-Y-Zr系镁合金组织性能和铸造缺陷对比[J]. 铸造, 2021,70(1):15−20.

    Chen Rongshi, Zhou Bo, Li Jilin, et al. Contrast of microstructure, mechanical properties and casting defects between high strength and heat resistant Mg-Y-Nd(-Gd)-Zr and Mg-Gd-Y-Zr magnesium alloys[J]. Foundry, 2021, 70(1): 15-20.
    [5] Fan Ruijun, Guan Zhiwei, Sun Cuixiang. Analysis of forging forming process for high strength magnesium alloys Mg-8Gd-1.5Y-1M containing Ti[J]. Iron Steel Vanadium Titanium, 2020,41(5):171−174. (樊瑞军, 关志伟, 孙翠香. 含钛高强镁合金Mg-8Gd-1.5Y-0.8Ti的锻造成形工艺分析[J]. 钢铁钒钛, 2020,41(5):171−174.

    Fan Ruijun, Guan Zhiwei, Sun Cuixiang. Analysis of forging forming process for high strength magnesium alloys Mg-8 Gd-1.5 Y-1 M containing Ti[J]. Iron Steel Vanadium Titanium, 2020, 41(5): 171-174.
    [6] Wang Zhongtang, Wu Kaiqi, Wang Minghao, et al. Study on dynamic recrystallization and microstructure evolution of magnesium alloy in process of composite deformation[J]. Hot Working Technology, 2021,50(19):94−98. (王忠堂, 吴凯琦, 王明浩, 等. 镁合金复合变形过程中的动态再结晶及微观组织演变规律研究[J]. 热加工工艺, 2021,50(19):94−98.

    Wang Zhongtang, Wu Kaiqi, Wang Minghao, et al. Study on dynamic recrystallization and microstructure evolution of magnesium alloy in process of composite deformation[J]. Hot Working Technology, 2021, 50(19): 94-98.
    [7] Gu Yuntao, Gao Xiaopeng, Dong Xiwang, et al. Microstructure and mechanical properties of Mg-Nd, Mg-Gd and Mg-Sb binary magnesium alloys[J]. Hot Working Technology, 2021,50(6):35−38. (顾赟涛, 高霄鹏, 董喜旺, 等. Mg-Nd、Mg-Gd和Mg-Sb二元镁合金的组织和力学性能[J]. 热加工工艺, 2021,50(6):35−38.

    Gu Yuntao, Gao Xiaopeng, Dong Xiwang, et al. Microstructure and mechanical properties of Mg-Nd, Mg-Gd and Mg-Sb binary magnesium alloys[J]. Hot Working Technology, 2021, 50(6): 35-38.
    [8] Xu Shubo, Sun Haibo, Liu Ting, et al. Influence of die geometry on ECAP deformation uniformity of magnesium alloy[J]. China Metalforming Equipment & Manufacturing Technology, 2021,56(2):100−105. (徐淑波, 孙海波, 刘婷, 等. 模具几何形状对镁合金ECAP变形均匀性的影响[J]. 锻压装备与制造技术, 2021,56(2):100−105.

    Xu Shubo, Sun Haibo, Liu Ting, et al. Influence of die geometry on ECAP deformation uniformity of magnesium alloy[J]. China Metalforming Equipment & Manufacturing Technology, 2021, 56(2): 100-105.
    [9] Li Quan, Jin Chaoyang. A comparative study on thermal compression flow stress of AZ80 magnesium alloy described by improved Fields-Backofen constitutive model[J]. Forging & Stamping Technology, 2021,46(3):221−228. (李全, 金朝阳. 改进的Fields-Backofen本构模型描述AZ80镁合金热压缩流动应力的比较研究[J]. 锻压技术, 2021,46(3):221−228.

    Li Quan, Jin Chaoyang. A comparative study on thermal compression flow stress of AZ80 magnesium alloy described by improved Fields-Backofen constitutive model[J]. Forging & Stamping Technology, 2021, 46(3): 221-228.
    [10] Xu Jingchao, Zhang Yanru, Yang Yue, et al. Analysis on microstructure and cell biological activity of new magnesium alloy by hot squeeze casting[J]. Journal of Ningbo University(Natural Science & Engineering Edition), 2022,35(1):26−32. (徐景超, 张雁儒, 杨越, 等. 热挤压铸造新型镁合金微观组织及细胞生物活性分析[J]. 宁波大学学报(理工版), 2022,35(1):26−32.

    Xu Jingchao, Zhang Yanru, Yang Yue, et al. Analysis on microstructure and cell biological activity of new magnesium alloy by hot squeeze casting[J]. Journal of Ningbo University(Natural Science & Engineering Edition), 2022, 35(1): 26-32.
    [11] Gao Xiaoshu, Lv Yun. Optimization of stamping process parameters of magnesium alloy sheet based on RSM and MPSO[J]. Hot Working Technology, 2021,50(15):79− 83, 87. (高孝书, 吕云. 基于RSM和MPSO的镁合金薄板冲压工艺参数优化[J]. 热加工工艺, 2021,50(15):79− 83, 87.

    Gao Xiaoshu, Lv Yun. Optimization of stamping process parameters of magnesium alloy sheet based on RSM and MPSO[J]. Hot Working Technology, 2021, 50(15): 79-83, 87.
    [12] Li Jilin, Feng Junning, Qin Chun, et al. Dendrite coherency point of WE54 magnesium alloy and its relation with solidification microstructure[J]. Foundry, 2021,70(11):1270−1276. (李吉林, 冯俊宁, 秦春, 等. 铸造WE54镁合金的枝晶干涉点及其与合金显微组织的关系[J]. 铸造, 2021,70(11):1270−1276.

    Li Jilin, Feng Junning, Qin Chun, et al. Dendrite coherency point of WE54 magnesium alloy and its relation with solidification microstructure[J]. Foundry, 2021, 70(11): 1270-1276.
    [13] Xiao Lv, Zhou Haitao, Wang Yanbo, et al. Linear shaped charge separation behavior and cutting mechanism of VW63Z cast magnesium alloy[J]. Special Casting & Nonferrous Alloys, 2021,41(1):11−15. (肖旅, 周海涛, 汪彦博, 等. VW63Z铸造镁合金线型分离性能及切割机理研究[J]. 特种铸造及有色合金, 2021,41(1):11−15.

    Xiao Lv, Zhou Haitao, Wang Yanbo, et al. Linear shaped charge separation behavior and cutting mechanism of VW63 Z cast magnesium alloy[J]. Special Casting & Nonferrous Alloys, 2021, 41(1): 11-15.
    [14] Wang Ying, Li Guangde. Study on casting properties of two AZ magnesium alloys based on cloud model PID control[J]. Hot Working Technology, 2021,50(3):71−73. (王瑛, 李广德. 基于云模型PID控制的两种AZ镁合金铸造性能研究[J]. 热加工工艺, 2021,50(3):71−73.

    Wang Ying, Li Guangde. Study on casting properties of two AZ magnesium alloys based on cloud model PID control[J]. Hot Working Technology, 2021, 50(3): 71-73.
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  25
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-03
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回