留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器学习的0Cr17Ni4Cu4Nb不锈钢流变应力预测研究

赵礼栋 张又铭 张继林 窦建明 姚家宝

赵礼栋, 张又铭, 张继林, 窦建明, 姚家宝. 基于机器学习的0Cr17Ni4Cu4Nb不锈钢流变应力预测研究[J]. 钢铁钒钛, 2023, 44(4): 196-204. doi: 10.7513/j.issn.1004-7638.2023.04.028
引用本文: 赵礼栋, 张又铭, 张继林, 窦建明, 姚家宝. 基于机器学习的0Cr17Ni4Cu4Nb不锈钢流变应力预测研究[J]. 钢铁钒钛, 2023, 44(4): 196-204. doi: 10.7513/j.issn.1004-7638.2023.04.028
Zhao Lidong, Zhang Youming, Zhang Jilin, Dou Jianming, Yao Jiabao. Research on prediction accuracy of the flow stress of 0Cr17Ni4Cu4Nb stainless steel based on machine learning[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 196-204. doi: 10.7513/j.issn.1004-7638.2023.04.028
Citation: Zhao Lidong, Zhang Youming, Zhang Jilin, Dou Jianming, Yao Jiabao. Research on prediction accuracy of the flow stress of 0Cr17Ni4Cu4Nb stainless steel based on machine learning[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 196-204. doi: 10.7513/j.issn.1004-7638.2023.04.028

基于机器学习的0Cr17Ni4Cu4Nb不锈钢流变应力预测研究

doi: 10.7513/j.issn.1004-7638.2023.04.028
基金项目: 甘肃省青年科技基金计划项目(21JR7RA351);甘肃省自然科学基金(20JR5RA376);甘肃省重点人才项目(甘组通字 [2022]77 号);国家级大学生创新创业训练计划项目(202211807007);兰州交通大学甘肃省重点实验室开放课题(2022051)。
详细信息
    作者简介:

    赵礼栋,1977年出生,男,硕士,副教授,主要从事计算机软件编程、硬件调试以及模型建立研究,E-mail:40241324@qq.com

    通讯作者:

    窦建明,1985年出生,男,博士,副教授,主要从事智能制造、切削过程状态监测与故障诊断研究,E-mail:lgy_116@163.com

  • 中图分类号: TG142.7,TP301.6

Research on prediction accuracy of the flow stress of 0Cr17Ni4Cu4Nb stainless steel based on machine learning

  • 摘要: 以0Cr17Ni4Cu4Nb不锈钢为例,提出一种基于粒子群优化BP神经网络预测流变应力的新模型。以常温下的准静态(0.001 s−1)压缩试验数据、四种温度(25、350、500、300 ℃)和六种应变率(750、1500、2 000、2600、3500、4500 s−1)的冲击试验数据为基础,构建了 0Cr17Ni4Cu4Nb不锈钢流变应力的随机森林预测模型、粒子群优化随机森林预测模型、Back Propagation(BP)神经网络预测模型以及粒子群优化BP神经网络预测模型,采用统计学的决定系数(R2)、平均绝对误差(MAE)、均方差(MSE)和均方误差平方根(RMSE)四个指标分析评价上述四种模型,得出四种模型预测的综合性能依次是粒子群优化BP神经网络模型、BP神经网络模型、粒子群优化随机森林模型、随机森林模型。粒子群优化BP神经网络模型决定系数R2=0.9997、平均绝对误差MAE=1.5773、均方差MSE=5.5053和均方误差平方根RMSE=2.3463,该模型能够很好预测 0Cr17Ni4Cu4Nb不锈钢流变应力。
  • 图  1  随机森林结构

    Figure  1.  Random forest structure

    图  2  BP神经网络结构

    Figure  2.  BP neural network structure

    图  3  基于PSO-RF流程

    Figure  3.  Flow chart based on PSO-RF

    图  4  基于PSO-BP神经网络流程

    Figure  4.  Flow chart based on PSO-RF neural network

    图  5  不同模型真应力预测和试验值之间的相关性

    Figure  5.  Correlation between predicted and experimental values of true stress by different models

    表  1  不锈钢0Cr17Ni4Cu4Nb的化学成分

    Table  1.   Chemical composition of 0Cr17Ni4Cu4Nb stainless steel %

    CSiCrNiMnPSCuNbFe
    0.050.8016.253.600.820.030.023.830.28Bal.
    下载: 导出CSV

    表  2  随机森林预测能力评价指标

    Table  2.   Random forest predictive capability evaluation index

    ntreeR2MAEMSEESE
    50.947724.40791069.263932.3405
    100.950023.98461022.440831.2505
    150.952623.4958969.309630.9611
    200.964520.9364725.611726.8710
    250.962921.1896759.266027.4315
    300.967619.5587661.354725.6921
    350.967220.1650671.321825.9012
    400.966420.2319687.360526.1867
    450.968419.7709645.141925.3661
    500.966720.0062680.311226.0351
    550.966620.1374681.869926.1012
    600.964720.6059721.031426.8389
    下载: 导出CSV

    表  3  粒子群优化随机森林预测能力评价指标

    Table  3.   Particle swarm optimization random forest prediction capability evaluation index

    ntreeR2MAEMSEESE
    160.967220.0205670.948225.8998
    下载: 导出CSV

    表  4  不同神经元个数训练下的评价指标

    Table  4.   Evaluation metrics under different training numbers of neurons

    神经元数量R2MAEMSEESE
    30.977716.5449455.939921.3527
    50.980215.4572404.037520.1007
    70.99517.4794100.204210.0102
    90.99686.039865.48118.092
    110.99824.422136.89696.0743
    130.99784.725945.18956.7223
    下载: 导出CSV

    表  5  不同隐含层个数训练下的评价指标

    Table  5.   Evaluation metrics under different training numbers of implied layers

    隐含层层数R2MAEMSEESE
    10.99824.419436.95136.0788
    20.99932.556914.47803.8050
    30.99962.08988.95982.9933
    40.99952.146410.30963.2109
    50.99952.04989.73883.1207
    60.99971.57735.54292.3543
    下载: 导出CSV

    表  6  粒子群优化BP神经网络训练下的评价指标

    Table  6.   Evaluation metrics under particle swarm optimization BP neural network training

    隐含层结构R2MAEMSEESE
    120.99695.851363.6777.9798
    12×120.99952.186310.96913.312
    12×12×80.99971.47705.50532.3463
    9×11×12×120.99971.66956.60392.5698
    12×11×10×12×110.99961.76807.32632.7067
    12×12×12×12×12×120.99971.50305.67002.3812
    下载: 导出CSV
  • [1] Wang Jianxing, Yang Gang, Zhang Zhongmo, et al. Effect of ECAP deformation on microstructure and mechanical properties of 0Cr17Ni4Cu4Nb stainless steel[J]. Journal of Plasticity Engineering, 2018,25(1):119−124. (王剑星, 杨钢, 张忠模, 等. ECAP变形对0Cr17Ni4Cu4Nb不锈钢组织与力学性能的影响[J]. 塑性工程学报, 2018,25(1):119−124.

    Wang Jianxing , Yang Gang , Zhang Zhongmo, et al. Effect of ECAP deformation on microstructure and mechanical properties of 0 Cr17 Ni4 Cu4 Nb stainless steel[J]. Journal of Plasticity Engineering, 2018, 25(1): 119-124.
    [2] Wang Jianxing, Yang Gang, Liu Tianmo, et al. Effect of Ni content on mechanical properties of 0Cr17Ni4Cu4Nb stainless steel[J]. Transactions of Materials and Heat Treatment, 2010,31(12):56−60. (王剑星, 杨钢, 刘天模, 等. Ni含量对0Cr17Ni4Cu4Nb不锈钢力学性能的影响[J]. 材料热处理学报, 2010,31(12):56−60.

    Wang Jianxing, Yang Gang, Liu Tianmo, et al. Effect of Ni content on mechanical properties of 0 Cr17 Ni4 Cu4 Nb stainless steel[J]. Transactions of Materials and Heat Treatment, 2010, 31(12): 56-60
    [3] Wang Hanxiao, Bai Bing, Zhang Changyi, et al. Micro-structure and properties analysis of nuclear power stem material 17-4PH stainless steel at different service time[J]. Nuclear Science and Engineering, 2018,38(2):318−325. (王瀚霄, 白冰, 张长义, 等. 核电阀杆材料17-4PH不锈钢服役不同时间的组织性能分析[J]. 核科学与工程, 2018,38(2):318−325. doi: 10.3969/j.issn.0258-0918.2018.02.022

    Wang Hanxiao, Bai Bing, Zhang Changyi, et al. Micro-structure and properties analysis of nuclear power stem material 17-4 PH stainless steel at different service time[J]. Nuclear Science and Engineering, 2018, 38(2): 318-325. doi: 10.3969/j.issn.0258-0918.2018.02.022
    [4] Huang Jing, Ma Yuan, Wang Mingjie, et al. Investigation and optimization of investment casting 0Cr17Ni4Cu3Nb stainless steel parts aero-engines[J]. Special Casting & Nonferrous Alloys, 2019,39(2):159−162. (黄静, 马原, 王明杰, 等. 精密铸造0Cr17Ni4Cu3Nb不锈钢航空发动机零件[J]. 特种铸造及有色合金, 2019,39(2):159−162.

    Huang Jing, Ma Yuan, Wang Mingjie, et al. Investigation and optimization of investment casting 0 Cr17 Ni4 Cu3 Nb stainless steel parts aero-engines[J]. Special Casting & Nonferrous Alloys, 2019, 39(2): 159-162
    [5] Sun Jianxin, Liu Yongsheng, Guo Baofeng, et al. Hot deformation behavior and hot processing map of 17-4PH stainless steel for oil fracturing valve box[J]. Journal of Plasticity Engineering, 2022,29(4):112−118. (孙建新, 刘永胜, 郭宝峰, 等. 石油压裂阀箱用17-4PH不锈钢热变形行为及热加工图[J]. 塑性工程学报, 2022,29(4):112−118.

    Sun Jianxin, Liu Yongsheng, Guo Baofeng, et al. Hot deformation behavior and hot processing map of 17-4 PH stainless steel for oil fracturing valve box [J]. Journal of Plasticity Engineering, 2022, 29(4): 112-118.
    [6] Zhang Jilin, Jia Haishen, Yi Xiangbin, et al. Effect of high temperature and high strain rate on the dynamic mechanical properties of 06Cr19Ni10 austenitic stainless steel[J]. Iron Steel Vanadium Titanium, 2022,43(1):145−151. (张继林, 贾海深, 易湘斌, 等. 高温高应变率对06Cr19Ni10奥氏体不锈钢动态力学性能的影响[J]. 钢铁钒钛, 2022,43(1):145−151.

    Zhang Jilin, Jia Haishen, Yi Xiangbin, et al. Effect of high temperature and high strain rate on the dynamic mechanical properties of 06 Cr19 Ni10 austenitic stainless steel[J]. Iron Steel Vanadium Titanium, 2022, 43(1): 145-151.
    [7] Jia Haishen, Zhang Jilin, Yi Xiangbin, et al. Experimental study on rheological behavior of 022Cr18Ni14Mo2 stainless steel at high temperature and high strain rate[J]. Journal of Mechanical Strength, 2022,44(3):600−606. (贾海深, 张继林, 易湘斌, 等. 高温、高应变率下022Cr18Ni14Mo2不锈钢流变行为的试验研究[J]. 机械强度, 2022,44(3):600−606.

    Jia Haishen, Zhang Jilin, Yi Xiangbin, et al. Experimental study on rheological behavior of 022 Cr18 Ni14 Mo2 stainless steel at high temperature and high strain rate[J]. Journal of Mechanical Strength, 2022, 44(3): 600-606
    [8] Jia Haishen, Luo Wencui, Zhang Jilin, et al. Study on dynamic mechanical properties and constitutive model of 022Cr18Ni14Mo2 stainless steel under impact load[J]. Iron Steel Vanadium Titanium, 2022,43(2):178−185. (贾海深, 罗文翠, 张继林, 等. 冲击载荷下022Cr18Ni14Mo2不锈钢动态力学特性及其本构模型研究[J]. 钢铁钒钛, 2022,43(2):178−185. doi: 10.7513/j.issn.1004-7638.2022.02.027

    Jia Haishen, Luo Wencui, Zhang Jilin, et al. Study on dynamic mechanical properties and constitutive model of 022 Cr18 Ni14 Mo2 stainless steel under impact load[J]. Iron Steel Vanadium Titanium, 2022, 43(2): 178-185. doi: 10.7513/j.issn.1004-7638.2022.02.027
    [9] Duan Xinmin, Sun Peiqiu, Xu Zhiqiang, et al. Study on the integral forming technology of front /rear interfacering for 0Cr17Ni4Cu4Nb[J]. Forging & Stamping Technology, 2016,41(5):44−48. (段新民, 孙培秋, 徐志强, 等. 0Cr17Ni4Cu4Nb前/后接口套圈整体成形技术研究[J]. 锻压技术, 2016,41(5):44−48.

    Duan Xinmin , Sun Peiqiu , Xu Zhiqiang, et al. Study on the integral forming technology of front /rear interfacering for 0 Cr17 Ni4 Cu4 Nb[J]. Forging & Stamping Technology, 2016, 41(5): 44-48.
    [10] Ding Jun, Gu Yuchuan, Huang Xia, et al. Research on prediction accuracy of flow stress of 304 stainless steel based on artificial neural network optimized by improved genetic algorithm[J]. Journal of Mechanical Engineering, 2022,58(10):78−86. (丁军, 古愉川, 黄霞, 等. 基于改进遗传算法优化人工神经网络的304不锈钢流变应力预测准确性研究[J]. 机械工程学报, 2022,58(10):78−86.

    Ding Jun , Gu Yuchuan , Huang Xia, et al. Research on prediction accuracy of flow stress of 304 stainless steel based on artificial neural network optimized by improved genetic algorithm[J]. Journal of Mechanical Engineering, 2022, 58(10): 78-86.
    [11] Zhong Mingjun, Wang Kelu, Lu Shiqiang, et al. Study on high temperature deformation behavior and BP neural network constitutive model of MoNb alloy[J]. Journal of Plasticity Engineering, 2020,27(12):177−182. (钟明君, 王克鲁, 鲁世强, 等. MoNb合金高温变形行为及BP神经网络本构模型研究[J]. 塑性工程学报, 2020,27(12):177−182. doi: 10.3969/j.issn.1007-2012.2020.12.025

    Zhong Mingjun, Wang Kelu, Lu Shiqiang, et al. Study on high temperature deformation behavior and BP neural network constitutive model of MoNb alloy[J]. Journal of Plasticity Engineering, 2020, 27(12): 177-182. doi: 10.3969/j.issn.1007-2012.2020.12.025
    [12] Luo Rui, Cao Yun, Qiu Yu, et al. Investigation of constitutive model of as-extruded spray-forming 7055 aluminum alloy based on BP artificial neural network[J]. Journal of Aeronautical Materials, 2021,41(1):35−44. (罗锐, 曹赟, 邱宇, 等. 基于BP人工神经网络喷射成形7055铝合金的本构模型[J]. 航空材料学报, 2021,41(1):35−44.

    Luo Rui , Cao Yun , Qiu Yu, et al. Investigation of constitutive model of as-extruded spray-forming 7055 aluminum alloy based on BP artificial neural network[J]. Journal of Aeronautical Materials, 2021, 41(1): 35-44.
    [13] Wu Xiongxi. Model of constitutive relationship and processing map for 7050 aluminum alloy based on BP neural network[J]. Special Casting & Nonferrous Alloys, 2014,34(10):1011−1015. (吴雄喜. 基于BP神经网络的7050铝合金本构关系模型及加工图[J]. 特种铸造及有色合金, 2014,34(10):1011−1015. doi: 10.15980/j.tzzz.2014.10.001

    Wu Xiongxi. Model of constitutive relationship and processing map for 7050 aluminum alloy based on BP neural network[J]. Special Casting & Nonferrous Alloys, 2014, 34(10): 1011-1015. doi: 10.15980/j.tzzz.2014.10.001
    [14] Zhou Feng, Wang Kelu, Lu Shiqiang, et al. Flow behavior and BP neural network high temperature constitutive model of Ti-22Al-24Nb-0.5Y alloy[J]. Journal of Materials Engineering, 2019,47(8):141−146. (周峰, 王克鲁, 鲁世强, 等. Ti-22Al-24Nb-0.5Y合金流变行为及BP神经网络高温本构模型[J]. 材料工程, 2019,47(8):141−146. doi: 10.11868/j.issn.1001-4381.2017.001548

    Zhou Feng , Wang Kelu , Lu Shiqiang, et al. Flow behavior and BP neural network high temperature constitutive model of Ti-22 Al-24 Nb-0.5 Y alloy[J]. Journal of Materials Engineering, 2019, 47(8): 141-146. doi: 10.11868/j.issn.1001-4381.2017.001548
    [15] Zhang Qing, Li Ping, Xue Kemin. Model of constitutive relationship for TB8 alloy based on BP neural network[J]. Forging & Stamping Technology, 2010,35(1):130−133. (张青, 李萍, 薛克敏. 基于BP神经网络的TB8合金高温本构关系模型[J]. 锻压技术, 2010,35(1):130−133.

    Zhang Qing , Li Ping , Xue Kemin. Model of constitutive relationship for TB8 alloy based on BP neural network[J].
    [16] Wang Tianxiang, Lu Shiqiang, Wang Kelu, et al. Flow stress behavior and artificial neural network constitutive model of Ti60 alloy[J]. Special Casting & Nonferrous Alloys, 2020,40(9):1019−1023. (王天祥, 鲁世强, 王克鲁, 等. Ti60合金的流变应力行为及人工神经网络本构模型[J]. 特种铸造及有色合金, 2020,40(9):1019−1023. doi: 10.15980/j.tzzz.2020.09.022

    Wang Tianxiang, Lu Shiqiang, Wang Kelu, et al. Flow stress behavior and artificial neural network constitutive model of Ti60 alloy[J]. Special Casting & Nonferrous Alloys, 2020, 40(9): 1019-1023 doi: 10.15980/j.tzzz.2020.09.022
    [17] An Zhen, Li Jinshan, Feng Yong, et al. Modeling constitutive relationship of Ti-555211 alloy by artificial neural network during high-temperature deformation[J]. Rare Metal Materials and Engineering, 2015,44(1):62−66. doi: 10.1016/S1875-5372(15)30013-8
    [18] Wang Chunhui, Sun Zhihui, Zhao Jiaqing, et al. Creep deformation constitutive model of BSTMUF601 superalloy using BP neural network method[J]. Rare Metal Materials and Engineering, 2020,49(6):1885−1893.
    [19] He Long, Zhang Ranyang, Zhao Gangyao, et al. Constitutive model of GH5188 superalloy based on BP neural network[J]. Special Casting & Nonferrous Alloyss, 2021,41(2):223−226. (何龙, 张冉阳, 赵刚要, 等. 基于BP神经网络的GH5188高温合金本构模型[J]. 特种铸造及有色合金, 2021,41(2):223−226. doi: 10.15980/j.tzzz.2021.02.020

    He Long , Zhang Ranyang, Zhao Gangyao, et al. Constitutive model of GH5188 superalloy based on BP neural network[J]. Special Casting & Nonferrous Alloyss, 2021, 41(2): 223-226. doi: 10.15980/j.tzzz.2021.02.020
    [20] Qiu Qian, Wang Kelu, Li Xin, et al. Constitutive relationship of SP700 titanium alloy based on BP neural network[J]. Journal of Plasticity Engineering, 2021,28(11):167−172. (邱仟, 王克鲁, 李鑫, 等. 基于BP神经网络的SP700钛合金本构关系[J]. 塑性工程学报, 2021,28(11):167−172.

    Qiu Qian, Wang Kelu, Li Xin, et al. Constitutive relationship of SP700 titanium alloy based on BP neural network[J]. Journal of Plasticity Engineering, 2021, 28(11): 167-172.
    [21] Lei Jinwen, Xue Xiangyi, Zhang Siyuan, et al. High-precision constitutive model of Ti6242s alloy hot deformation based on artificial neural network[J]. Rare Metal Materials and Engineering, 2021,50(6):2025−2032. (雷锦文, 薛祥义, 张思远, 等. 基于人工神经网络的高精度Ti6242s合金热变形本构模型[J]. 稀有金属材料与工程, 2021,50(6):2025−2032.

    Lei Jinwen, Xue Xiangyi, Zhang Siyuan, et al. High-precision constitutive model of Ti6242 s alloy hot deformation based on artificial neural network[J]. Rare Metal Materials and Engineering, 2021, 50(6): 2025-2032.
    [22] Zhang Pin, Yin Zhenyu, Jin Yinfu, et al. A novel hybrid surrogate intelligent model for creep index prediction based on particle swarm optimization and random forest[J]. Engineering Geology, 2020,265:628−638.
    [23] Wang Jie, Cheng Xuexin, Peng Jinzhu. A weighted random forest model based on particle swarm optimization[J]. Journal of Zhengzhou University(Natural Science Edition), 2018,50(1):72−76. (王杰, 程学新, 彭金柱. 一种基于粒子群算法优化的加权随机森林模型[J]. 郑州大学学报(理学版), 2018,50(1):72−76. doi: 10.13705/j.issn.1671-6841.2017006

    Wang Jie, Cheng Xuexin, Peng Jinzhu. A weighted random forest model based on particle swarm optimization[J]. Journal of Zhengzhou University(Natural Science Edition), 2018, 50(1): 72-76. doi: 10.13705/j.issn.1671-6841.2017006
    [24] Breiman L. Random forests[J]. Machine Learning, 2001,45(1):5−32. doi: 10.1023/A:1010933404324
    [25] Wang Weitong, Fan Haidong, Liang Chengsi, et al. Predictive modeling of NOx outlet of hedged boiler based on random forest[J]. Thermal Power Generation, 2022,51(4):96−104. (王伟同, 范海东, 梁成思, 等. 基于随机森林算法的对冲锅炉出口NOx排放量预测模型研究[J]. 热力发电, 2022,51(4):96−104.

    Wang Weitong, Fan Haidong, Liang Chengsi, et al. Predictive modeling of NOx outlet of hedged boiler based on random forest[J]. Thermal Power Generation, 2022, 51(4): 96-104.
    [26] Wu Xianguo, Liu Pengcheng, Chen Hongyu, et al. Prediction of concrete strength based on random forest[J]. Concrete, 2022,(1):17−20,24. (吴贤国, 刘鹏程, 陈虹宇, 等. 基于随机森林的高性能混凝土抗压强度预测[J]. 混凝土, 2022,(1):17−20,24.

    Wu Xianguo, Liu Pengcheng, Chen Hongyu, et al. Prediction of concrete strength based on random forest[J]. Concrete, 2022(1): 17-20, 24.
    [27] Yan Liangming, Shen Jian, Li Zhoubing, et al. Modelling for flow stress and processing map of 7055 aluminum alloy based on artificial neural networks[J]. The Chinese Journal of Nonferrous Metals, 2010,20(7):1296−1301. (闫亮明, 沈健, 李周兵, 等. 基于神经网络的7055铝合金流变应力模型和加工图[J]. 中国有色金属学报, 2010,20(7):1296−1301. doi: 10.19476/j.ysxb.1004.0609.2010.07.008

    Yan Liangming, Shen Jian, Li Zhoubing, et al. Modelling for flow stress and processing map of 7055 aluminum alloy based on artificial neural networks[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(7): 1296-1301. doi: 10.19476/j.ysxb.1004.0609.2010.07.008
    [28] Lv Zhe, He Lile, Lin Yuyang, et al. Parameters prediction of BP neural network based on constitutive model of aluminum alloy powder forming[J]. Hot Working Technology, 2022,51(4):46−50. (吕哲, 贺利乐, 林育阳, 等. 基于铝合金粉末成形本构模型的BP神经网络参数预测[J]. 热加工工艺, 2022,51(4):46−50.

    Lv Zhe, He Lile, Lin Yuyang, et al. Parameters prediction of BP neural network based on constitutive model of aluminum alloy powder forming[J]. Hot Working Technology, 2022, 51(4): 46-50.
    [29] Feng Xi, Li Qing, Quan Wei, et al. Overview of multiobjective particle swarm optimization algorithm[J]. Chinese Journal of Engineering, 2021,43(6):745−753. (冯茜, 李擎, 全威, 等. 多目标粒子群优化算法研究综述[J]. 工程科学学报, 2021,43(6):745−753.

    Feng Xi, Li Qing, Quan Wei, et al. Overview ofmultiobjective particle swarm optimization algorithm[J]. Chinese Journal of Engineering, 2021, 43(6): 745-753.
    [30] Li Hejian, Xu Xiaowei, Wang Ke, et al. Transformer fault diagnosis model based on particle swarm optimization and random forest[J]. Journal of Kunming University of Science and Technology(Natural Sciences), 2021,46(3):94−101. (李鹤健, 徐肖伟, 王科, 等. 基于粒子群优化随机森林的变压器故障诊断模型[J]. 昆明理工大学学报(自然科学版), 2021,46(3):94−101. doi: 10.16112/j.cnki.53-1223/n.2021.03.451

    Li Hejian, Xu Xiaowei, Wang Ke, et al. Transformer fault diagnosis model based on particle swarm optimization and random forest[J]. Journal of Kunming University of Science and Technology(Natural Sciences), 2021, 46(3): 94-101. doi: 10.16112/j.cnki.53-1223/n.2021.03.451
    [31] Li Le, Shu Yuechao, Wu Jianpeng, et al. A damage prediction model of wet friction elements based on PSO-BP neural network[J]. Transactions of Beijing Institute of Technology, 2022,42(12):1246−1255. (李乐, 舒越超, 吴健鹏, 等. 基于PSO-BP神经网络湿式摩擦元件损伤预测模型[J]. 北京理工大学学报, 2022,42(12):1246−1255. doi: 10.15918/j.tbit1001-0645.2021.347

    Li Le, Shu Yuechao, Wu Jianpeng, et al. A damage prediction model of wet friction elements based on PSO-BP neural network[J]. Transactions of Beijing Institute of Technology, 2022, 42(12): 1246-1255. DOI: 10.15918/j.tbit1001-0645.2021.347.
    [32] Fan Shengxu, Yang Chunxi, Yang Qiliang, et al. Prediction model of Panax notoginseng leaf area growth based on particle swarm-optimization random forest algorithm and meteorological data[J]. Chinese Traditional and Herbal Drugs, 2022,53(10):3103−3110. (范升旭, 杨春曦, 杨启良, 等. 基于粒子群-随机森林算法和气象数据的三七叶面积生长预测模型[J]. 中草药, 2022,53(10):3103−3110. doi: 10.7501/j.issn.0253-2670.2022.10.021

    Fan Shengxu, Yang Chunxi, Yang Qiliang, et al. Prediction model of Panax notoginseng leaf area growth based on particle swarm-optimization random forest algorithm and meteorological data[J]. Chinese Traditional and Herbal Drugs, 2022, 53(10): 3103-3110. doi: 10.7501/j.issn.0253-2670.2022.10.021
    [33] 程学新. 粒子群优化加权随机森林算法研究[D]. 郑州: 郑州大学, 2017.

    Cheng Xuexin. Research on particle swarm optimization weighted random forest algorithm[D]. Zhengzhou: Zhengzhou University, 2017.
    [34] 李超. 粒子群优化算法改进策略及其应用研究[D]. 无锡: 江南大学, 2021.

    Li Chao. Improvement strategies for particle swarm optimization algorithms with applications[D]. Wuxi: Jiangnan University, 2021.
    [35] Chang Ruohan, Cai Zhongyi, Cheng Liren, et al. Flow stress prediction model and processing map of Mg-Zn-Zr alloy based on GA-BP network[J]. Materials Reports, 2017,31(6):136−139,146. (常若寒, 蔡中义, 程丽任, 等. 基于遗传BP网络的Mg-Sm-Zn-Zr合金应力预测模型及加工图[J]. 材料导报, 2017,31(6):136−139,146. doi: 10.11896/j.issn.1005-023X.2017.06.027

    Chang Ruohan, Cai Zhongyi, Cheng Liren, et al. Flow stress prediction model and processing map of Mg-Zn-Zr alloy based on GA-BP network[J]. Materials Reports, 2017, 31(6): 136-139, 146. doi: 10.11896/j.issn.1005-023X.2017.06.027
    [36] Zhang Jilin, Jia Haishen, Yi Xiangbin, et al. Dynamic mechanical properties and comparison of two constitutive models for martensitic stainless steel 0Cr17Ni4Cu4Nb[J]. Materials Research Express, 2021,8(10):106501. doi: 10.1088/2053-1591/ac29f5
    [37] Hu Yi, Zhang Lushan, Yuan Fuyin, et al. Prediction of concrete strength based on random forest[J]. Construction Technology, 2020,49(17):89−94. (胡毅, 张陆山, 袁福银, 等. 基于随机森林的混凝土强度预测研究[J]. 施工技术, 2020,49(17):89−94.

    Hu Yi, Zhang Lushan, Yuan Fuyin, et al. Prediction of concrete strength based on random forest[J]. Construction Technology, 2020, 49(17): 89-94.
    [38] Zou Dafang, Wang Zidong, Zhang Leimin, et al. Deep field relation neural network for click-through rate prediction[J]. Information Sciences, 2021,577:128−139. doi: 10.1016/j.ins.2021.06.079
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  23
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-16
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回