留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛铁矿浮选动力学测试及分析

马宠涵 樊学赛 陈飞飞

马宠涵, 樊学赛, 陈飞飞. 钛铁矿浮选动力学测试及分析[J]. 钢铁钒钛, 2023, 44(5): 8-14. doi: 10.7513/j.issn.1004-7638.2023.05.002
引用本文: 马宠涵, 樊学赛, 陈飞飞. 钛铁矿浮选动力学测试及分析[J]. 钢铁钒钛, 2023, 44(5): 8-14. doi: 10.7513/j.issn.1004-7638.2023.05.002
Ma Chonghan, Fan Xuesai, Chen Feifei. Flotation dynamics test and analysis for ilmenite[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 8-14. doi: 10.7513/j.issn.1004-7638.2023.05.002
Citation: Ma Chonghan, Fan Xuesai, Chen Feifei. Flotation dynamics test and analysis for ilmenite[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 8-14. doi: 10.7513/j.issn.1004-7638.2023.05.002

钛铁矿浮选动力学测试及分析

doi: 10.7513/j.issn.1004-7638.2023.05.002
基金项目: 十四五重点研发项目(面向战略矿产选冶过程智能化关键共性技术-战略矿产资源智能(可穿戴)选冶过程数据感知元器件与产品,2021YFC2902702)。
详细信息
    作者简介:

    马宠涵,1993年出生,男,吉林辽源人,硕士,助理工程师,主要从事选矿设备设计及研究工作,E-mail:machonghan@bgrimm.com

  • 中图分类号: TF823,TD923

Flotation dynamics test and analysis for ilmenite

  • 摘要: 磁选加浮选逐渐成为钛铁矿综合回收的最佳工艺流程,浮选回收面临着矿石比重大、粒度粗、矿浆浓度高(约65%)、作业产率大等特点。针对某厂现有浮选流程,进行了选钛浮选机浮选动力学测试及分析。空气分散度测试表明各台浮选机空气分散度偏小,空气在槽体截面上分散不均,同时吸浆槽浮选机空气分散度明显小于直流槽,空气分散效果不理想;气泡负载率测试表明粗粒级矿物上升运输过程中脱落概率大,回收效果较差;矿浆悬浮能力测试表明浮选机均存在明显的矿浆分层现象,即距溢流堰1100 mm以下矿浆浓度相差不大,随着距溢流堰深度减小,浓度明显下降,近溢流堰区域的矿浆浓度明显小于叶轮区域;浮选机气含率分布不均匀,表明浮选机操作过程中缺乏规律,不能够保证矿物颗粒与气泡间的碰撞、粘附概率。
  • 图  1  系列选钛浮选机平面布置

    Figure  1.  Series titanium flotation cell layout

    图  2  系列选钛浮选机平面布置

    Figure  2.  Series titanium flotation cell layout

    图  3  排水集气法充气量测试示意(单位:mm)

    Figure  3.  Schematic diagrams of aeration volume test using drainage and gas collection method

    图  4  浮选机空气分散度及充气量测量点

    Figure  4.  Flotation cell air dispersion and aeration measurement points

    图  5  泡沫负载率测试点

    Figure  5.  Measurement positions of air bubble loading

    图  6  粗选第2槽泡沫负载粒级筛析结果

    Figure  6.  The results of the second tank of Rougher froth load particle size screening

    图  7  扫选第2槽泡沫负载粒级筛析结果

    Figure  7.  The results of the second tank of Scavenger froth load particle size screening

    图  8  扫选第2槽泡沫负载粒级筛析结果

    Figure  8.  The results of the second Scavenger froth load particle size screening

    图  9  精选第2槽泡沫负载粒级筛析结果

    Figure  9.  The results of the second tank of Cleaner froth load particle size screening

    图  10  系列深槽取样示意(单位:mm)

    Figure  10.  Schematic diagram of Series deep cell sampling

    图  11  系列深槽取样示意(单位:mm)

    Figure  11.  Schematic diagram of Series deep cell sampling

    表  1  系列各槽充气量Jg及空气分散度η

    Table  1.   Series Air filling volume Jg and air dispersion η of each tank

    作业名称浮选机序号充气量 Jg /[m3·(m2·min)−1]空气分散度 η
    粗选10.680.82
    20.700.79
    30.760.93
    40.371.6
    扫选Ⅰ10.310.77
    20.181.46
    扫选Ⅱ10.410.69
    精选Ⅰ10.623.11
    20.531.23
    30.130.83
    精选Ⅱ10.830.68
    20.790.65
    精选Ⅲ10.720.77
    精选Ⅳ11.630.81
    下载: 导出CSV

    表  2  系列各槽充气量Jg

    Table  2.   Series Air filling volume Jg of each tank

    作业名称浮选机序号充气量Jg /[m3·(m2·min)−1]
    粗选10.53
    20.74
    30.90
    40.81
    扫选Ⅰ10.77
    20.43
    30.26
    扫选Ⅱ10.73
    20.36
    精选Ⅰ10.87
    20.40
    30.30
    精选Ⅱ10.64
    20.49
    精选Ⅲ10.86
    20.60
    30.43
    精选Ⅳ11.01
    20.82
    下载: 导出CSV

    表  3  气泡负载率分布

    Table  3.   Air bubble loading distribution

    距溢流堰
    深度/mm
    粗选扫选Ⅰ扫选Ⅱ精选Ⅰ
    TiO2品位/%气泡负载率/(g·L−1)TiO2品位/%气泡负载率/(g·L−1)TiO2品位/%气泡负载率/(g·L−1)TiO2品位/%气泡负载率/(g·L−1)
    27044.7953.6537.1936.0029.3418.2748.15251.37
    64044.4267.3733.3660.3430.2667.7149.14249.5
    101045.6549.7432.5769.6727.7191.0748.46415.95
    下载: 导出CSV

    表  4  系列各作业第2台浮选机矿浆浓度

    Table  4.   Series slurry concentration of the second flotation machine in each operation

    距溢流

    深度/mm
    矿浆浓度/%
    粗选扫选Ⅰ扫选Ⅱ精选Ⅰ精选Ⅱ精选Ⅲ精选Ⅳ
    60025.8714.8415.2423.0926.1818.9427.65
    110036.4515.5226.9824.4726.1924.0630.31
    160051.7738.5943.7733.0531.2242.9838.17
    210052.5341.3946.0838.1531.1546.7144.09
    下载: 导出CSV

    表  5  I系列各作业第2台浮选机矿浆浓度

    Table  5.   Series slurry concentration of the second flotation machine in each operation

    距溢流
    堰深度/mm
    矿浆浓度/%
    粗选扫选I精选I精选III
    50036.0424.2223.9230.78
    90037.8829.1425.5433.45
    130038.0930.3427.5637.49
    下载: 导出CSV

    表  6  各作业气含率测试及浮选时间核算结果

    Table  6.   Gas holdup test and flotation time calculation results of each bank

    作业
    名称
    设备
    型号
    浮选容
    积/m3
    气含
    率/%
    泡沫层厚
    度/mm
    容积
    系数
    处理量/
    (m3·h−1)
    核算浮选
    时间/min
    粗选X/K-16646.32200.84238.113.56
    扫选IX/K-16324.21100.90169.5610.30
    扫选IIX/K-16164700.92131.926.76
    精选IX/K-164810.41100.85134.4118.17
    精选IIX/K-16326.34100.76105.4813.79
    精选IIIXCF-16166.34000.76143.185.11
    精选IVXCF-161610.25400.66122.75.18
    下载: 导出CSV
  • [1] Tan Qiyou, Chen Bo, Zhang Yushu, et al. Characteristics and current situation of comprehensive utilization of vanadium titano-magnetite resources in Panxi region[J]. Multipurpose Utilization of Mineral Resources, 2011,(6):6−10. (谭其尤, 陈波, 张裕书, 等. 攀西地区钒钛磁铁矿资源特点与综合回收利用现状[J]. 矿产综合利用, 2011,(6):6−10.

    Tan Qiyou, Chen Bo, Zhang Yushu, et al. Characteristics and current situation of comprehensive utilization of vanadium titano-magnetite resources in Panxi region[J]. Multipurpose Utilization of Mineral Resources, 2011(6): 6-10.
    [2] Xiao Liangchu. Improvement research on titanium concentration technology for Panxi vanadium-titanium magnetite[J]. Multipurpose Utilization of Mineral Resources, 2012,(2):57−60. (肖良初. 攀西钒钛磁铁矿选钛工艺改进研究[J]. 矿产综合利用, 2012,(2):57−60.

    Xiao Liangchu. Improvement research on titanium concentration technology for Panxi vanadium-titanium magnetite[J]. Multipurpose Utilization of Mineral Resources, 2012(2): 57-60.
    [3] Fan Xuesai, Chen Jun, Shi Shuaixing, et al. Titanium flotation dynamics analysis for vanadium-titanium magnetite[J]. Iron Steel Vanadium Titanium, 2019,40(2):97−101. (樊学赛, 陈俊, 史帅星, 等. 钒钛磁铁矿选钛浮选机动力学特性分析[J]. 钢铁钒钛, 2019,40(2):97−101.

    Fan Xuesai, Chen Jun, Shi Shuaixing, et al. Titanium flotation dynamics analysis for vanadium-titanium magnetite[J]. Iron Steel Vanadium Titanium, 2019, 40(2): 97-101.
    [4] Chen Dong, Xia Xiaoou, Yang Lijun, et al. Kinetics research and application of the 320 m3 self-aeration flotation cell[J]. Mining and Metallurgy, 2019,28(4):118−125. (陈东, 夏晓鸥, 杨丽君. 等. 320 m3自吸气浮选机动力学性能研究和工程化[J]. 矿冶, 2019,28(4):118−125. doi: 10.3969/j.issn.1005-7854.2019.04.022

    Chen Dong, Xia Xiaoou, Yang Lijun, et al. Kinetics research and application of the 320 m³ self-aeration flotation cell[J]. Mining and Metallurgy, 2019, 28(4): 118-125. doi: 10.3969/j.issn.1005-7854.2019.04.022
    [5] Han Dengfeng, Wu Feng, Zhang Fuya, et al. Innovation and application of bubble load measuring device[J]. Nonferrous Metals(Mineral Processing Section), 2020,(1):91−97. (韩登峰, 吴峰, 张福亚, 等. 气泡负载测量装置的创新及应用[J]. 有色金属(选矿部分), 2020,(1):91−97.

    Han Dengfeng, Wu Feng, Zhang Fuya, et al. Innovation and application of bubble load measuring device[J]. Nonferrous Metals(Mineral Processing Section), 2020(1): 91-97.
    [6] Shen Zhengchang, Lu Shijie, Chen Dong, et al. Research of solids suspension in large-scale mechanical flotation cell[J]. Nonferrous Metals(Mineral Processing Section), 2009,(4):37−40. (沈政昌, 卢世杰, 陈东, 等. 大型机械搅拌式浮选机槽内固体悬浮的研究[J]. 有色金属(选矿部分), 2009,(4):37−40.

    Shen Zhengchang, Lu Shijie, Chen Dong, et al. Research of solids suspension in large-scale mechanical flotation cell[J]. Nonferrous Metals(Mineral Processing Section), 2009(4): 37-40.
    [7] Zhang Yuejun, Ren Linhai, Chen Feifei, et al. Study on flotation dynamics of KYF-320 flotation cell in molybdenum rougher and scavenger bank[J]. Nonferrous Metals(Mineral Processing Section), 2019,(5):102−107. (张跃军, 任林海, 陈飞飞, 等. 钼粗扫选作业KYF-320浮选机浮选动力学研究[J]. 有色金属(选矿部分), 2019,(5):102−107.

    Zhang Yuejun, Ren Linhai, Chen Feifei, et al. Study on flotation dynamics of KYF-320 flotation cell in molybdenum rougher and scavenger bank[J]. Nonferrous Metals(Mineral Processing Section), 2019(5): 102-107.
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  18
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-21
  • 网络出版日期:  2023-11-04
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回