留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

青海某低品位难选铁矿选矿试验研究

罗云波 肖金雄 石云良 谢宝华

罗云波, 肖金雄, 石云良, 谢宝华. 青海某低品位难选铁矿选矿试验研究[J]. 钢铁钒钛, 2023, 44(5): 28-35. doi: 10.7513/j.issn.1004-7638.2023.05.005
引用本文: 罗云波, 肖金雄, 石云良, 谢宝华. 青海某低品位难选铁矿选矿试验研究[J]. 钢铁钒钛, 2023, 44(5): 28-35. doi: 10.7513/j.issn.1004-7638.2023.05.005
Luo Yunbo, Xiao Jinxiong, Shi Yunliang, Xie Baohua. Experimental study on beneficiation of a low-grade refractory iron ore in Qinghai province[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 28-35. doi: 10.7513/j.issn.1004-7638.2023.05.005
Citation: Luo Yunbo, Xiao Jinxiong, Shi Yunliang, Xie Baohua. Experimental study on beneficiation of a low-grade refractory iron ore in Qinghai province[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 28-35. doi: 10.7513/j.issn.1004-7638.2023.05.005

青海某低品位难选铁矿选矿试验研究

doi: 10.7513/j.issn.1004-7638.2023.05.005
详细信息
    作者简介:

    罗云波,1987年出生,男,湖南东安人,工程师,主要从事选矿工艺及药剂研发, E-mail:635921756@qq.com

    通讯作者:

    谢宝华,1989年出生,男,江西瑞金人,工程师,主要从事矿物加工工程及资源综合利用方面的研究,E-mail:xie19890411@qq.com

  • 中图分类号: TD951

Experimental study on beneficiation of a low-grade refractory iron ore in Qinghai province

  • 摘要: 针对青海某难选铁矿石铁品位较低,磁铁矿嵌布粒度细,与脉石矿物关系复杂的特点,采用干抛—阶段磨矿—阶段磁选的工艺流程进行试验研究,该工艺流程的主要特点是在干抛和一段磨矿作业时可以抛掉大量的尾矿,大幅度降低后续磨矿作业的入磨量。结果表明,经过四段磨矿,在最终磨矿细度−0.025 mm占95.15%时,可以获得含TFe 64.10%,TFe回收率为70.45%的铁精矿,较好地实现了该低品位难选铁矿的回收。同时,分析了四段铁精矿中的磁铁矿仍有少部分呈铁的贫连生体产出,其组成是影响铁精矿品位难以进一步提高的主要原因。
  • 图  1  试验原则流程

    Figure  1.  Test principle flow-chart

    图  2  干抛试验流程

    Figure  2.  The flow-chart of dry throw separation test

    图  3  一段/二段磨矿—弱磁选条件试验流程

    Figure  3.  The condition test flow-chart of the first/second stage grinding and low intensity magnetic separation

    图  4  一段磨矿细度试验结果

    Figure  4.  Fineness test results of the first stage grinding

    图  5  一段磁场强度试验结果

    Figure  5.  Results of the first stage magnetic field strength test

    图  6  二段磨矿细度试验结果

    Figure  6.  Fineness test results of the second stage grinding

    图  7  二段磁场强度试验结果

    Figure  7.  Results of the second stage magnetic field strength test

    图  8  三段/四段磨矿—弱磁选条件试验流程

    Figure  8.  The conditiontest flow-chart of the third/fourth stage grinding-low intensity magnetic separation

    图  9  三段磨矿细度试验结果

    Figure  9.  Fineness test results of the third stage grinding

    图  10  三段磁场强度试验结果

    Figure  10.  Results of the third magnetic field strength test

    图  11  四段磨矿细度试验结果

    Figure  11.  Fineness test results of the fourth stage grinding

    图  12  四段磁场强度试验结果

    Figure  12.  Results of the fourth magnetic field strength test

    图  13  微脉状磁铁矿(M,棕灰白色)与铬尖晶石嵌连构成铁的极贫连生体

    Figure  13.  Microvein magnetite (M, brown gray white) intercalated with chromium spinel to form an extremely poor synthetical body of iron

    表  1  原矿化学多元素分析结果

    Table  1.   Results of chemical multi-element analysis of run-of-mine %

    TFeFeOFe2O3NiCr2O3SiO2Al2O3CaOMgOPS烧失TFe/FeO碱性系数
    13.444.9413.410.260.7033.350.550.6233.360.0050.02412.672.721.00
    下载: 导出CSV

    表  2  铁化学物相分析结果

    Table  2.   Results of iron chemical phase analysis %

    铁 相磁铁矿中铁假象赤铁矿中铁赤(褐)铁矿中铁碳酸盐中铁硫化物中铁硅酸盐中铁合 计
    含 量9.751.221.060.310.021.0813.44
    分布率72.549.087.892.310.158.04100.00
    下载: 导出CSV

    表  3  矿石主要矿物的含量

    Table  3.   Main mineral content of ore %

    磁铁矿磁赤铁矿镍黄铁矿铬尖
    晶石
    蛇纹石辉 石、角闪石、橄榄石滑石、
    绿泥石
    其 它
    14.61.7微量1.461.416.14.60.2
    下载: 导出CSV

    表  4  磁铁矿的嵌布粒度结果

    Table  4.   The distribution size of magnetite

    粒 级/
    mm
    分布率/%累计
    分布率/%
    粒 级 /mm分布率/%累计
    分布率/%
    ≥+0.5912.8812.88−0.074~+0.0527.4878.58
    −0.59~+0.426.1118.99−0.052~+0.0377.6686.24
    −0.42~+0.307.3226.31−0.037~+0.0265.8692.10
    −0.30~+0.219.6635.97−0.026~+0.0193.3595.45
    −0.21~+0.1511.6447.61−0.019~+0.0131.6997.14
    −0.15~+0.10512.4160.02−0.013~+0.0101.4898.62
    −0.105~+0.07411.0871.10≤-0.0101.38100.00
    下载: 导出CSV

    表  5  干抛试验结果

    Table  5.   Results of dry throw separation test

    粒级/mm产品名称产率/%品位/%回收率/%
    TFeMFeTFeMFe
    −6干抛精矿78.2615.9012.0892.5997.01
    干抛尾矿21.744.581.347.412.99
    原矿100.0013.449.75100.00100.00
    −12干抛精矿84.3214.5011.1090.9696.04
    干抛尾矿15.687.752.469.043.96
    原矿100.0013.449.75100.00100.00
    下载: 导出CSV

    表  6  反浮选探索试验结果

    Table  6.   Reverse flotation test results

    药剂种类及
    用量/(g·t−1)
    产品名称TFe作业
    产率/%
    TFe品位/%TFe作业
    回收率/%
    RA-715100浮选精矿74.2564.5774.79
    浮选尾矿25.7562.7425.21
    给矿100.0064.10100.00
    200浮选精矿50.6464.7351.14
    浮选尾矿49.3663.4548.86
    给矿100.0064.10100.00
    400浮选精矿33.2264.8433.60
    浮选尾矿66.7863.7366.40
    给矿100.0064.10100.00
    十二胺100浮选精矿68.4864.6169.02
    浮选尾矿31.5262.9930.98
    给矿100.0064.10100.00
    200浮选精矿48.5864.7949.10
    浮选尾矿51.4263.4550.90
    给矿100.0064.10100.00
    400浮选精矿29.6864.9230.06
    浮选尾矿70.3263.7569.94
    给矿100.0064.10100.00
    下载: 导出CSV

    表  7  四段铁精矿的化学多元素分析结果

    Table  7.   Results of chemical multielement analysis of iron concentrate of the fourth stage %

    FeCaOMgOSiO2Al2O3SPCrMnNi
    64.100.0613.233.500.140.00660.00561.020.100.78
    下载: 导出CSV

    表  8  四段铁精矿中磁铁矿的解离度

    Table  8.   Dissociation degree of magnetite in the fourth stage iron concentrate %

    单 体连 生 体
    >3/43/4~1/21/2~1/4<1/4
    94.50.61.52.11.3
    下载: 导出CSV

    表  9  全流程试验结果

    Table  9.   Test results of the whole process %

    产品名称产率TFe品位TFe回收率
    铁精矿14.7764.1070.45
    四段尾矿1.6112.691.52
    三段尾矿5.128.383.19
    二段尾矿5.754.181.79
    一段尾矿51.014.1215.64
    干抛尾矿21.744.587.41
    原矿100.0013.44100.00
    下载: 导出CSV
  • [1] Zhao Liqun, Wang Chunnv, Zhang Min, et al. Current exploration status and supply-demand situation of iron ore resources in China mainland[J]. Geology and Exploration, 2020,56(3):635−643. (赵立群, 王春女, 张敏, 等. 中国铁矿资源勘查开发现状及供需形势分析[J]. 地质与勘探, 2020,56(3):635−643.

    Zhao Liqun, Wang Chunnv, Zhang Min, et al. Current exploration status and supply-demand situation of iron ore resources in China mainland[J]. Geology and Exploration, 2020, 56(03): 635-643.
    [2] Ke Jiayan, Shi Yunliang, Xiao Jinxiong et al. Mineral proccessing technique for an iron ore from Russia[J]. Mining and Metallurgical Engineering, 2019,39(6):50−53. (柯佳焱, 石云良, 肖金雄, 等. 俄罗斯某铁矿选矿工艺研究[J]. 矿冶工程, 2019,39(6):50−53. doi: 10.3969/j.issn.0253-6099.2019.06.012

    Ke Jiayan, Shi Yunliang, Xiao Jinxiong et al. Mineral proccessing technique for an iron ore from Russia[J]. Mining and Metallurgical Engineering, 2019, 39(06): 50-53. doi: 10.3969/j.issn.0253-6099.2019.06.012
    [3] Yang Zhaojun, Xie Baohua, Zhong Senlin, et al. Experimental study on mineralogy and beneficiation of an iron ore from Australia[J]. Iron Steel Vanadium Titanium, 2022,43(6):115−120,137. (杨招君, 谢宝华, 钟森林, 等. 澳大利亚某铁矿工艺矿物学及选矿试验研究[J]. 钢铁钒钛, 2022,43(6):115−120,137.

    Yang Zhaojun, Xie Baohua, Zhong Senlin, et al. Experimental study on mineralogy and beneficiation of an iron ore from Australia [J]. Iron Steel Vanadium Titanium, 2022, 43(06): 115-120+137.
    [4] Ouyang Linli. Mineral processing test of a low-grade fine-graine iron ore in Shandong[J]. Sintering and Pelletizing, 2022,47(2):81−87,95. (欧阳林莉. 山东某低品位微细粒铁矿选矿试验[J]. 烧结球团, 2022,47(2):81−87,95.

    Ouyang Linli. Mineral processing test of a low-grade fine-graine iron ore in Shandong [J]. Sintering and Pelletizing, 2022, 47(02): 81-87+95.
    [5] Huang Wusheng, Yuan Qidong, Lin Xiaofeng, et al. Experimental study on beneficiation of a foreign hematite ore[J]. Modern Mining, 2021,37(11):125−129. (黄武胜, 袁启东, 林小凤, 等. 国外某赤褐铁矿选矿试验研究[J]. 现代矿业, 2021,37(11):125−129. doi: 10.3969/j.issn.1674-6082.2021.11.033

    Huang Wusheng, Yuan Qidong, Lin Xiaofeng, et al. Experimental study on beneficiation of a foreign hematite ore [J]. Modern Mining, 2021, 37(11): 125-129. doi: 10.3969/j.issn.1674-6082.2021.11.033
    [6] Xiao Wanqin, Zhu Yangge, Hu Xiaoxing, et al. Experimental study on beneficiation of a refractory iron ore with high alumina and silicon[J]. Nonferrous Metals (Mineral Processing Section), 2022,(1):109−114. (肖婉琴, 朱阳戈, 胡晓星, 等. 某高铝高硅难选铁矿选矿试验研究[J]. 有色金属(选矿部分), 2022,(1):109−114.

    Xiao Wanqin, Zhu Yangge, Hu Xiaoxing, et al. Experimental study on beneficiation of a refractory iron ore with high alumina and silicon [J]. Nonferrous Metals (Mineral Processing Section), 2022(01): 109-114.
    [7] Jiao Kecheng. Beneficiation process for an overseas high phosphorus-silicon oolitic iron ore[J]. Mining and Metallurgical Engineering, 2018,38(4):65−68. (焦科诚. 国外某高磷硅鲕状铁矿选矿工艺研究[J]. 矿冶工程, 2018,38(4):65−68. doi: 10.3969/j.issn.0253-6099.2018.04.016

    Jiao Kecheng. Beneficiation process for an overseas high phosphorus-silicon oolitic iron ore[J]. Mining and Metallurgical Engineering, 2018, 38(04): 65-68. doi: 10.3969/j.issn.0253-6099.2018.04.016
    [8] Wu Peng, Guo Shunlei, Li Teng. Exploratory test of beneficiation of an iron ore in Hami, Xinjiang[J]. Modern Mining, 2020,36(7):139−141. (吴鹏, 郭顺磊, 李腾. 新疆哈密某铁矿石选矿探索试验[J]. 现代矿业, 2020,36(7):139−141.

    Wu Peng, Guo Shunlei, Li Teng. Exploratory test of beneficiation of an iron ore in Hami, Xinjiang [J]. Modern Mining, 2020, 36(07): 139-141.
    [9] Xiao Qifei, Shi Yunliang, Liu Jun. Study on new technology and process of ore dressing in Beishan site of Nanfen open pit iron mine[J]. Modern Mining, 2019,35(9):121−125. (肖启飞, 石云良, 刘军. 南芬露天铁矿北山部位矿石选矿新技术及工艺试验[J]. 现代矿业, 2019,35(9):121−125. doi: 10.3969/j.issn.1674-6082.2019.09.035

    Xiao Qifei, Shi Yunliang, Liu Jun. Study on New Technology and Process of Ore Dressing in Beishan site of Nanfen Open Pit Iron Mine[J]. Modern Mining, 2019, 35(09): 121-125. doi: 10.3969/j.issn.1674-6082.2019.09.035
    [10] Yang Xuanxing. Interference of magnetic coagulation in magnetic separation of Miaogou iron mine and its emeasures for its elimination[J]. Metal Mine, 1995,(9):46−48. (杨宣兴. 庙沟铁矿磁选过程中磁团聚干扰及消除措施[J]. 金属矿山, 1995,(9):46−48.

    Yang Xuanxing. Interference of magnetic coagulation in magnetic separation of Miaogou iron mine and its emeasures for its elimination[J]. Metal Mine, 1995(9): 46-48.
  • 加载中
图(13) / 表(9)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  25
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-14
  • 网络出版日期:  2023-11-04
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回