中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Mathews和FLAC3D的采场结构参数优化研究

李翠 张良兵 陈涛 罗少琛

李翠, 张良兵, 陈涛, 罗少琛. 基于Mathews和FLAC3D的采场结构参数优化研究[J]. 钢铁钒钛, 2023, 44(5): 41-47. doi: 10.7513/j.issn.1004-7638.2023.05.007
引用本文: 李翠, 张良兵, 陈涛, 罗少琛. 基于Mathews和FLAC3D的采场结构参数优化研究[J]. 钢铁钒钛, 2023, 44(5): 41-47. doi: 10.7513/j.issn.1004-7638.2023.05.007
Li Cui, Zhang Liangbing, Chen Tao, Luo Shaochen. Optimization of stope structure parameters based on Mathews and FLAC3D[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 41-47. doi: 10.7513/j.issn.1004-7638.2023.05.007
Citation: Li Cui, Zhang Liangbing, Chen Tao, Luo Shaochen. Optimization of stope structure parameters based on Mathews and FLAC3D[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 41-47. doi: 10.7513/j.issn.1004-7638.2023.05.007

基于Mathews和FLAC3D的采场结构参数优化研究

doi: 10.7513/j.issn.1004-7638.2023.05.007
详细信息
    作者简介:

    李翠,1995年出生,女,硕士,采矿工程师,主要从事采矿工艺及充填材料等研究,E-mail:1369467558@qq.com

  • 中图分类号: TD858

Optimization of stope structure parameters based on Mathews and FLAC3D

  • 摘要: 以攀西某地下矿山为例,基于Mathews稳定图法和经验类比法估算采场暴露面积,推荐采场顶板允许暴露面积为800~1200 m2,矿体侧帮允许暴露面积为4000~5000 m2。基于FLAC3D数值模拟分析优化采场结构参数,结果表明,随采场长度和阶段高度增大,采场周围的最大拉应力、最大压应力和最大剪应力都呈增加趋势。结合矿山现有开拓系统,推荐攀西某地下矿山阶段高度为60 m,采场长度为60 m。
  • 图  1  Trueman扩展的Mathews稳定图(2000)[14]

    Figure  1.  Trueman extended Mathews stability graph (2000)

    图  2  采场计算模型

    Figure  2.  Stope calculation model diagram

    图  3  方案一~方案三压应力、拉应力和剪应力云图

    Figure  3.  Cloud charts of compressive stress, tensile stress and shear stress for scheme I to scheme III

    图  4  方案一~方案三塑性区图

    Figure  4.  Plastic zone maps for scheme I to scheme III

    图  6  方案四~方案六塑性区图

    Figure  6.  Plastic zone maps for scheme Ⅳ to scheme Ⅵ

    图  5  方案四~方案六压应力、拉应力和剪应力云图

    Figure  5.  Cloud charts of compressive stress, tensile stress and shear stress for scheme Ⅳ to scheme Ⅵ

    表  1  Q值系统评分结果

    Table  1.   Q-value system rating results

    岩体RQD
    /%
    JnJrJaJwSRFQ质量描述岩体等级
    辉长岩516110.661.05.61一般5
    下载: 导出CSV

    表  2  稳定数N计算结果

    Table  2.   Calculation results of stable number N

    岩石名称Q′值ACNLogN
    辉长岩顶板帮5.611.04.313.26761.1228
    侧帮5.611.04.39.64920.9845
    下载: 导出CSV

    表  3  Mathews稳定图法估算的采场暴露面积

    Table  3.   Estimation of exposed area of mining stope using Mathews stability map method

    岩石名称部位形状因子S/m暴露面积/m2备注
    辉长岩顶板7.141000近似值
    侧帮17.034600近似值
    辉长岩
    (RQD增加10%)
    顶板9.251300近似值
    侧帮18.515000近似值
    辉长岩
    (RQD减少10%)
    顶板6.07850近似值
    侧帮16.294400近似值
    辉长岩
    (RQD减少20%)
    顶板5.01700近似值
    侧帮15.404160近似值
    下载: 导出CSV

    表  4  不同节理裂隙程度的辉长岩暴露面积值

    Table  4.   Exposed area values of gabbro with different joint fissure degrees


    部位节理不发育
    (或充填质量较好)
    节理中等发育
    (或充填质量中等)
    节理较发育
    (或充填质量较差)


    顶 板12001000800
    侧 帮500046004000
    下载: 导出CSV

    表  5  数值模拟计算所用的材料物理力学参数

    Table  5.   Physical and mechanical parameters of materials used in numerical simulation


    名 称
    块体密度/
    (g·cm−3
    变形模量
    /GPa
    泊松比单轴抗压
    /MPa
    抗拉强度
    /MPa
    内聚力
    /MPa
    内摩擦角
    /(°)
    矿体3.5015.940.2026.90.811.640.0
    上盘3.0914.960.2225.50.601.7540.5
    下盘2.9314.120.2326.60.601.5042.0
    下载: 导出CSV

    表  6  矿房及矿柱合理参数研究计算方案

    Table  6.   Research and calculation scheme of reasonable parameters of room and pillar

    计算方案特征说明备 注
    采场长度/m矿房宽度/m阶段高度/m
    方案一401570采场长度
    优化
    方案二601570
    方案三801570
    方案四601560阶段高度
    优化
    方案五601570
    方案六601580
    下载: 导出CSV

    表  7  采场长度优化模拟计算结果

    Table  7.   Simulation calculation results of stope length optimization

    编号采场长
    度/m
    采场顶板两帮上下盘
    最大拉应
    力/MPa
    最大压应
    力/MPa
    最大剪应
    力/MPa
    最大位移/
    mm
    最大拉应
    力/MPa
    最大压应
    力/MPa
    最大剪应
    力/MPa
    最大位移/
    mm
    最大拉应
    力/MPa
    最大压应
    力/MPa
    最大剪应
    力/MPa
    方案一40020.278.21120.2813.064.8631015.191.61
    方案二60024.889.35150.6211.324.4939015.151.55
    方案三80025.499.73420.7112.715.2645014.491.74
    下载: 导出CSV

    表  8  采场阶段高度优化模拟计算结果

    Table  8.   Optimization simulation results of stope stage height

    编号阶段高
    度/m
    采场顶板采场两帮上下盘
    最大拉应
    力/MPa
    最大压应
    力/MPa
    最大剪应
    力/MPa
    最大位移/
    mm
    最大拉应
    力/MPa
    最大压应
    力/MPa
    最大剪应
    力/MPa
    最大位移/
    mm
    最大拉应
    力/MPa
    最大压应
    力/MPa
    最大剪应
    力/MPa
    方案四60023.519.3190.5810.124.2837015.771.34
    方案五70024.889.35150.6211.324.4939015.151.55
    方案六80025.369.44480.6812.834.7441014.781.67
    下载: 导出CSV
  • [1] 王青, 任凤玉, 顾晓薇, 等. 采矿学[M]. 北京: 冶金工业出版社, 2011.

    Wang Qing, Ren Fengyu, Gu Xiaowei, et al. Mining [M]. Beijing: Metallurgical Industry Press, 2011.
    [2] Guo Lei, Xiong Lianghui. Application and development trend of pillarless sublevel caving[J]. China Mine Engineering, 2010, 39,(6):44−48. (郭雷, 熊靓辉. 无底柱分段崩落法现状及发展趋势[J]. 中国矿山工程, 2010, 39,(6):44−48.

    Guo Lei, Xiong Lianghui. Application and development trend of pillarless sublevel caving [J]. China Mine Engineering, 2010 (6) : 5.
    [3] He Rongxing, Chen Liyuan, Ren Fengyu. Study status and development direction of loss and dilution of non-pillar sublevel caving method in China[J]. Metal Mines, 2022,(11):1-9. (何荣兴, 陈丽媛, 任凤玉. 我国无底柱分段崩落法损失贫化研究现状及发展方向[J]. 金属矿山, 2022,(11):1-9.

    He Rongxing, Chen Liyuan, Ren Fengyu. Study status and development direction of loss and dilution of non-pillar sublevel caving method in China [J]. Metal Mines, 2022 (11) : 9.
    [4] Wei Chaocheng, Zhang Ming, Luo Rui, et al. Optimization of structure parameters of empty field subsequent filling stope based on Mathews graphical method[J]. China Mining Magazine, 2022,31(7):137−142. (魏超城, 张明, 罗瑞, 等. 基于Mathews图解法的空场嗣后充填采场结构参数优化研究[J]. 中国矿业, 2022,31(7):137−142.

    Wei Chaocheng, Zhang Ming, Luo Rui, et al. Optimization of structure parameters of empty field subsequent filling stope based on Mathews graphical method [J]. China Mining Magazine, 2022, 31 (7) : 6.
    [5] Chen Lin, Huang Mingqing, Tang Shaohui, et al. Optimization and stability analysis of stope structure parameters of large-diameter deep-hole open stoping with subsequent filling[J]. Metal Mines, 2022,(11):44−51. (陈霖, 黄明清, 唐绍辉, 等. 大直径深孔空场嗣后充填法采场结构参数优化及稳定性分析[J]. 金属矿山, 2022,(11):44−51.

    Chen Lin, Huang Mingqing, Tang Shaohui, et al. Optimization and stability analysis of stope structure parameters of large-diameter deep-hole open stoping with subsequent filling [J]. Metal Mines, 2022 (11) : 8.
    [6] Ma Junsheng, Ren Gaofeng, Zhang Congrui, et al. Research on the optimization of stope span based on stability chart method and numerical simulation[J]. China Mine Engineering, 2017,46(6):7-14. (马俊生, 任高峰, 张聪瑞, 等. 基于稳定性图表法和数值模拟的采场跨度优化研究[J]. 中国矿山工程, 2017,46(6):7-14.

    Ma Junsheng, Ren Gaofeng, Zhang Congrui, et al. Research on the optimization of stope span based on stability chart method and numerical simulation [J]. China Mine Engineering, 2017, 46 (6) : 8.
    [7] Yu Haihua, Song Weidong, Tang Yanan, et al. Optimization of stope structure parameters and filling blending ratio for stage open stoping with subsequent filling[J]. Mining Research and Development, 2012,(6):10−14. (余海华, 宋卫东, 唐亚男, 等. 阶段空场嗣后充填法采场结构参数及充填配比优化[J]. 矿业研究与开发, 2012,(6):10−14.

    Yu Haihua, Song Weidong, Tang Yanan, et al. Optimization of stope structure parameters and filling blending ratio for stage open stoping with subsequent filling [J]. Mining Research and Development, 2012 (6) : 5.
    [8] Tang Lizhong, Deng Lifan, Jian Yinghua. Optimization of stope structure parameters of sublevel open stoping with subsequent filling mining[J]. Gold Science and Technology, 2016,24(2):8-13. (唐礼忠, 邓丽凡, 翦英骅. 分段空场嗣后充填采矿法采场结构参数优化研究[J]. 黄金科学技术, 2016,24(2):8-13.

    Tang Lizhong, Deng Lifan, Jian Yinghua. Optimization of stope structure parameters of sublevel open stoping with subsequent filling mining [J]. Gold Science and Technology, 2016, 24 (2): 6.
    [9] Liu Jiandong, Xie Lianku, Cao Hui. Study on structural parameters optimization and stability of stope for large-scale backfill mining[J]. Metal Mine, 2018,(12):10-13. (刘建东, 解联库, 曹辉. 大规模充填采矿采场稳定性研究与结构参数优化[J]. 金属矿山, 2018,(12):10-13.

    Liu Jiandong, Xie Lianku, Cao Hui. Study on structural parameters optimization and stability of stope for large-scale backfill mining [J]. Metal Mine, 2018 (12) : 4.
    [10] Shao Yaping, Cui Song, Chen Yin, et al. Study on optimization of stope structural parameters of downward medium deep hole open stoping with subsequent filling[J]. China Mining Magazine, 2020,29(S02):329-335. (邵亚平, 崔松, 陈寅, 等. 下行中深孔空场嗣后充填采场结构参数优化研究[J]. 中国矿业, 2020,29(S02):329-335.

    Shao Yaping, Cui Song, Chen Yin, et al. Study on optimization of stope structural parameters of downward medium deep hole open stoping with subsequent filling [J]. China Mining Magazine, 2020, 29 (S02) : 7.
    [11] Hao Yimin, Song Weidong, Zhang Kai, et al. Optimization study on stope structural parameters of sublevel open stoping method with backfill[J]. Mining Research and Development, 2020,40(3):15-19. (郝益民, 宋卫东, 张凯, 等. 阶段空场嗣后充填采场结构参数优化研究[J]. 矿业研究与开发, 2020,40(3):15-19.

    Hao Yimin, Song Weidong, Zhang Kai, et al. Optimization study on stope structural parameters of sublevel open stoping method with backfill [J]. Mining Research and Development, 2020, 40 (3) : 5.
    [12] Jia Xueyuan, Qiao Dengpan, He Mingsheng, et al. Study on structural parameters of stope with sublevel open stope and subsequent filling in Luodang mine[J]. Nonferrous Metals (Mine Part), 2021,73(6):93−98. (贾学元, 乔登攀, 何名声, 等. 落凼矿分段空场嗣后充填法采场结构参数研究[J]. 有色金属(矿山部分), 2021,73(6):93−98.

    Jia Xueyuan, Qiao Dengpan, He Mingsheng, et al. Study on structural parameters of stope with sublevel open stope and subsequent filling in Luodang mine [J]. Nonferrous Metals (Mine Part), 2021, 73 (6) : 93-98.
    [13] Ma Jinya, Liao Jiubo, Wang Xiaotian. Research on stope structure parameters of stage open stoping with subsequent filling in Huangshaping mine[J]. Mining Technology, 2022,22(4):1-3. (马金亚, 廖九波, 王筱添. 黄沙坪矿区阶段空场嗣后充填法采场结构参数研究[J]. 采矿技术, 2022,22(4):1-3.

    Ma Jinya, Liao Jiubo, Wang Xiaotian. Research on stope structure parameters of stage open stoping with subsequent filling in Huangshaping mine [J]. Mining Technology, 2022, 22 (4) : 3.
    [14] Xiao Jun. Application of Mathews stability diagram method in determining the exposed area of mine stope[J]. Xinjiang Nonferrous Metals, 2013,36(2):19-20. (肖军. Mathews稳定图法在确定矿山采场暴露面积中的应用[J]. 新疆有色金属, 2013,36(2):19-20.

    Xiaojun. Application of Mathews stability diagram method in determining the exposed area of mine stope [J]. Xinjiang Nonferrous Metals, 2013, 36 (2) : 2.
    [15] Yin Tubing, Zhang Minglu. Determination on the exposure area in stope based on Mathews stability graphic method[J]. Modern Mining, 2015,(6):8-10, 14. (尹土兵, 张鸣鲁. 基于Mathews稳定图法的采场暴露面积确定[J]. 现代矿业, 2015,(6):8-10, 14.

    Yin Tubing, Zhang Minglu. Determination on the exposure area in stope based on Mathews stability graphic method [J]. Modern Mining, 2015 (6) : 4.
    [16] 陶雪芬. 湖南柿竹园多金属矿地压监测系统研究[D]. 武汉: 武汉理工大学, 2010.

    Tao Xuefen. Study on ground pressure monitoring system of Shizhuyuan polymetallic ore in Hunan province[D]. Wuhan: Wuhan University of Technology, 2010.
    [17] 周小龙. 高阶段两步回采采场地压动态演化规律及其结构优化研究[D]. 北京: 北京科技大学, 2020.

    Zhou Xiaolong. Study on dynamic evolution rule of ground pressure and optimization of stope structure in high-level two-step mining [D]. Beijing: University of Science and Technology Beijing, 2020.
  • 加载中
图(6) / 表(8)
计量
  • 文章访问数:  367
  • HTML全文浏览量:  119
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-20
  • 网络出版日期:  2023-11-04
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回