留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Mathews和FLAC3D的采场结构参数优化研究

李翠 张良兵 陈涛 罗少琛

李翠, 张良兵, 陈涛, 罗少琛. 基于Mathews和FLAC3D的采场结构参数优化研究[J]. 钢铁钒钛, 2023, 44(5): 41-47. doi: 10.7513/j.issn.1004-7638.2023.05.007
引用本文: 李翠, 张良兵, 陈涛, 罗少琛. 基于Mathews和FLAC3D的采场结构参数优化研究[J]. 钢铁钒钛, 2023, 44(5): 41-47. doi: 10.7513/j.issn.1004-7638.2023.05.007
Li Cui, Zhang Liangbing, Chen Tao, Luo Shaochen. Optimization of stope structure parameters based on Mathews and FLAC3D[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 41-47. doi: 10.7513/j.issn.1004-7638.2023.05.007
Citation: Li Cui, Zhang Liangbing, Chen Tao, Luo Shaochen. Optimization of stope structure parameters based on Mathews and FLAC3D[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 41-47. doi: 10.7513/j.issn.1004-7638.2023.05.007

基于Mathews和FLAC3D的采场结构参数优化研究

doi: 10.7513/j.issn.1004-7638.2023.05.007
详细信息
    作者简介:

    李翠,1995年出生,女,硕士,采矿工程师,主要从事采矿工艺及充填材料等研究,E-mail:1369467558@qq.com

  • 中图分类号: TD858

Optimization of stope structure parameters based on Mathews and FLAC3D

  • 摘要: 以攀西某地下矿山为例,基于Mathews稳定图法和经验类比法估算采场暴露面积,推荐采场顶板允许暴露面积为800~1200 m2,矿体侧帮允许暴露面积为4000~5000 m2。基于FLAC3D数值模拟分析优化采场结构参数,结果表明,随采场长度和阶段高度增大,采场周围的最大拉应力、最大压应力和最大剪应力都呈增加趋势。结合矿山现有开拓系统,推荐攀西某地下矿山阶段高度为60 m,采场长度为60 m。
  • 图  1  Trueman扩展的Mathews稳定图(2000)[14]

    Figure  1.  Trueman extended Mathews stability graph (2000)

    图  2  采场计算模型

    Figure  2.  Stope calculation model diagram

    图  3  方案一~方案三压应力、拉应力和剪应力云图

    Figure  3.  Cloud charts of compressive stress, tensile stress and shear stress for scheme I to scheme III

    图  4  方案一~方案三塑性区图

    Figure  4.  Plastic zone maps for scheme I to scheme III

    图  6  方案四~方案六塑性区图

    Figure  6.  Plastic zone maps for scheme Ⅳ to scheme Ⅵ

    图  5  方案四~方案六压应力、拉应力和剪应力云图

    Figure  5.  Cloud charts of compressive stress, tensile stress and shear stress for scheme Ⅳ to scheme Ⅵ

    表  1  Q值系统评分结果

    Table  1.   Q-value system rating results

    岩体RQD
    /%
    JnJrJaJwSRFQ质量描述岩体等级
    辉长岩516110.661.05.61一般5
    下载: 导出CSV

    表  2  稳定数N计算结果

    Table  2.   Calculation results of stable number N

    岩石名称Q′值ACNLogN
    辉长岩顶板帮5.611.04.313.26761.1228
    侧帮5.611.04.39.64920.9845
    下载: 导出CSV

    表  3  Mathews稳定图法估算的采场暴露面积

    Table  3.   Estimation of exposed area of mining stope using Mathews stability map method

    岩石名称部位形状因子S/m暴露面积/m2备注
    辉长岩顶板7.141000近似值
    侧帮17.034600近似值
    辉长岩
    (RQD增加10%)
    顶板9.251300近似值
    侧帮18.515000近似值
    辉长岩
    (RQD减少10%)
    顶板6.07850近似值
    侧帮16.294400近似值
    辉长岩
    (RQD减少20%)
    顶板5.01700近似值
    侧帮15.404160近似值
    下载: 导出CSV

    表  4  不同节理裂隙程度的辉长岩暴露面积值

    Table  4.   Exposed area values of gabbro with different joint fissure degrees


    部位节理不发育
    (或充填质量较好)
    节理中等发育
    (或充填质量中等)
    节理较发育
    (或充填质量较差)


    顶 板12001000800
    侧 帮500046004000
    下载: 导出CSV

    表  5  数值模拟计算所用的材料物理力学参数

    Table  5.   Physical and mechanical parameters of materials used in numerical simulation


    名 称
    块体密度/
    (g·cm−3
    变形模量
    /GPa
    泊松比单轴抗压
    /MPa
    抗拉强度
    /MPa
    内聚力
    /MPa
    内摩擦角
    /(°)
    矿体3.5015.940.2026.90.811.640.0
    上盘3.0914.960.2225.50.601.7540.5
    下盘2.9314.120.2326.60.601.5042.0
    下载: 导出CSV

    表  6  矿房及矿柱合理参数研究计算方案

    Table  6.   Research and calculation scheme of reasonable parameters of room and pillar

    计算方案特征说明备 注
    采场长度/m矿房宽度/m阶段高度/m
    方案一401570采场长度
    优化
    方案二601570
    方案三801570
    方案四601560阶段高度
    优化
    方案五601570
    方案六601580
    下载: 导出CSV

    表  7  采场长度优化模拟计算结果

    Table  7.   Simulation calculation results of stope length optimization

    编号采场长
    度/m
    采场顶板两帮上下盘
    最大拉应
    力/MPa
    最大压应
    力/MPa
    最大剪应
    力/MPa
    最大位移/
    mm
    最大拉应
    力/MPa
    最大压应
    力/MPa
    最大剪应
    力/MPa
    最大位移/
    mm
    最大拉应
    力/MPa
    最大压应
    力/MPa
    最大剪应
    力/MPa
    方案一40020.278.21120.2813.064.8631015.191.61
    方案二60024.889.35150.6211.324.4939015.151.55
    方案三80025.499.73420.7112.715.2645014.491.74
    下载: 导出CSV

    表  8  采场阶段高度优化模拟计算结果

    Table  8.   Optimization simulation results of stope stage height

    编号阶段高
    度/m
    采场顶板采场两帮上下盘
    最大拉应
    力/MPa
    最大压应
    力/MPa
    最大剪应
    力/MPa
    最大位移/
    mm
    最大拉应
    力/MPa
    最大压应
    力/MPa
    最大剪应
    力/MPa
    最大位移/
    mm
    最大拉应
    力/MPa
    最大压应
    力/MPa
    最大剪应
    力/MPa
    方案四60023.519.3190.5810.124.2837015.771.34
    方案五70024.889.35150.6211.324.4939015.151.55
    方案六80025.369.44480.6812.834.7441014.781.67
    下载: 导出CSV
  • [1] 王青, 任凤玉, 顾晓薇, 等. 采矿学[M]. 北京: 冶金工业出版社, 2011.

    Wang Qing, Ren Fengyu, Gu Xiaowei, et al. Mining [M]. Beijing: Metallurgical Industry Press, 2011.
    [2] Guo Lei, Xiong Lianghui. Application and development trend of pillarless sublevel caving[J]. China Mine Engineering, 2010, 39,(6):44−48. (郭雷, 熊靓辉. 无底柱分段崩落法现状及发展趋势[J]. 中国矿山工程, 2010, 39,(6):44−48.

    Guo Lei, Xiong Lianghui. Application and development trend of pillarless sublevel caving [J]. China Mine Engineering, 2010 (6) : 5.
    [3] He Rongxing, Chen Liyuan, Ren Fengyu. Study status and development direction of loss and dilution of non-pillar sublevel caving method in China[J]. Metal Mines, 2022,(11):1-9. (何荣兴, 陈丽媛, 任凤玉. 我国无底柱分段崩落法损失贫化研究现状及发展方向[J]. 金属矿山, 2022,(11):1-9.

    He Rongxing, Chen Liyuan, Ren Fengyu. Study status and development direction of loss and dilution of non-pillar sublevel caving method in China [J]. Metal Mines, 2022 (11) : 9.
    [4] Wei Chaocheng, Zhang Ming, Luo Rui, et al. Optimization of structure parameters of empty field subsequent filling stope based on Mathews graphical method[J]. China Mining Magazine, 2022,31(7):137−142. (魏超城, 张明, 罗瑞, 等. 基于Mathews图解法的空场嗣后充填采场结构参数优化研究[J]. 中国矿业, 2022,31(7):137−142.

    Wei Chaocheng, Zhang Ming, Luo Rui, et al. Optimization of structure parameters of empty field subsequent filling stope based on Mathews graphical method [J]. China Mining Magazine, 2022, 31 (7) : 6.
    [5] Chen Lin, Huang Mingqing, Tang Shaohui, et al. Optimization and stability analysis of stope structure parameters of large-diameter deep-hole open stoping with subsequent filling[J]. Metal Mines, 2022,(11):44−51. (陈霖, 黄明清, 唐绍辉, 等. 大直径深孔空场嗣后充填法采场结构参数优化及稳定性分析[J]. 金属矿山, 2022,(11):44−51.

    Chen Lin, Huang Mingqing, Tang Shaohui, et al. Optimization and stability analysis of stope structure parameters of large-diameter deep-hole open stoping with subsequent filling [J]. Metal Mines, 2022 (11) : 8.
    [6] Ma Junsheng, Ren Gaofeng, Zhang Congrui, et al. Research on the optimization of stope span based on stability chart method and numerical simulation[J]. China Mine Engineering, 2017,46(6):7-14. (马俊生, 任高峰, 张聪瑞, 等. 基于稳定性图表法和数值模拟的采场跨度优化研究[J]. 中国矿山工程, 2017,46(6):7-14.

    Ma Junsheng, Ren Gaofeng, Zhang Congrui, et al. Research on the optimization of stope span based on stability chart method and numerical simulation [J]. China Mine Engineering, 2017, 46 (6) : 8.
    [7] Yu Haihua, Song Weidong, Tang Yanan, et al. Optimization of stope structure parameters and filling blending ratio for stage open stoping with subsequent filling[J]. Mining Research and Development, 2012,(6):10−14. (余海华, 宋卫东, 唐亚男, 等. 阶段空场嗣后充填法采场结构参数及充填配比优化[J]. 矿业研究与开发, 2012,(6):10−14.

    Yu Haihua, Song Weidong, Tang Yanan, et al. Optimization of stope structure parameters and filling blending ratio for stage open stoping with subsequent filling [J]. Mining Research and Development, 2012 (6) : 5.
    [8] Tang Lizhong, Deng Lifan, Jian Yinghua. Optimization of stope structure parameters of sublevel open stoping with subsequent filling mining[J]. Gold Science and Technology, 2016,24(2):8-13. (唐礼忠, 邓丽凡, 翦英骅. 分段空场嗣后充填采矿法采场结构参数优化研究[J]. 黄金科学技术, 2016,24(2):8-13.

    Tang Lizhong, Deng Lifan, Jian Yinghua. Optimization of stope structure parameters of sublevel open stoping with subsequent filling mining [J]. Gold Science and Technology, 2016, 24 (2): 6.
    [9] Liu Jiandong, Xie Lianku, Cao Hui. Study on structural parameters optimization and stability of stope for large-scale backfill mining[J]. Metal Mine, 2018,(12):10-13. (刘建东, 解联库, 曹辉. 大规模充填采矿采场稳定性研究与结构参数优化[J]. 金属矿山, 2018,(12):10-13.

    Liu Jiandong, Xie Lianku, Cao Hui. Study on structural parameters optimization and stability of stope for large-scale backfill mining [J]. Metal Mine, 2018 (12) : 4.
    [10] Shao Yaping, Cui Song, Chen Yin, et al. Study on optimization of stope structural parameters of downward medium deep hole open stoping with subsequent filling[J]. China Mining Magazine, 2020,29(S02):329-335. (邵亚平, 崔松, 陈寅, 等. 下行中深孔空场嗣后充填采场结构参数优化研究[J]. 中国矿业, 2020,29(S02):329-335.

    Shao Yaping, Cui Song, Chen Yin, et al. Study on optimization of stope structural parameters of downward medium deep hole open stoping with subsequent filling [J]. China Mining Magazine, 2020, 29 (S02) : 7.
    [11] Hao Yimin, Song Weidong, Zhang Kai, et al. Optimization study on stope structural parameters of sublevel open stoping method with backfill[J]. Mining Research and Development, 2020,40(3):15-19. (郝益民, 宋卫东, 张凯, 等. 阶段空场嗣后充填采场结构参数优化研究[J]. 矿业研究与开发, 2020,40(3):15-19.

    Hao Yimin, Song Weidong, Zhang Kai, et al. Optimization study on stope structural parameters of sublevel open stoping method with backfill [J]. Mining Research and Development, 2020, 40 (3) : 5.
    [12] Jia Xueyuan, Qiao Dengpan, He Mingsheng, et al. Study on structural parameters of stope with sublevel open stope and subsequent filling in Luodang mine[J]. Nonferrous Metals (Mine Part), 2021,73(6):93−98. (贾学元, 乔登攀, 何名声, 等. 落凼矿分段空场嗣后充填法采场结构参数研究[J]. 有色金属(矿山部分), 2021,73(6):93−98.

    Jia Xueyuan, Qiao Dengpan, He Mingsheng, et al. Study on structural parameters of stope with sublevel open stope and subsequent filling in Luodang mine [J]. Nonferrous Metals (Mine Part), 2021, 73 (6) : 93-98.
    [13] Ma Jinya, Liao Jiubo, Wang Xiaotian. Research on stope structure parameters of stage open stoping with subsequent filling in Huangshaping mine[J]. Mining Technology, 2022,22(4):1-3. (马金亚, 廖九波, 王筱添. 黄沙坪矿区阶段空场嗣后充填法采场结构参数研究[J]. 采矿技术, 2022,22(4):1-3.

    Ma Jinya, Liao Jiubo, Wang Xiaotian. Research on stope structure parameters of stage open stoping with subsequent filling in Huangshaping mine [J]. Mining Technology, 2022, 22 (4) : 3.
    [14] Xiao Jun. Application of Mathews stability diagram method in determining the exposed area of mine stope[J]. Xinjiang Nonferrous Metals, 2013,36(2):19-20. (肖军. Mathews稳定图法在确定矿山采场暴露面积中的应用[J]. 新疆有色金属, 2013,36(2):19-20.

    Xiaojun. Application of Mathews stability diagram method in determining the exposed area of mine stope [J]. Xinjiang Nonferrous Metals, 2013, 36 (2) : 2.
    [15] Yin Tubing, Zhang Minglu. Determination on the exposure area in stope based on Mathews stability graphic method[J]. Modern Mining, 2015,(6):8-10, 14. (尹土兵, 张鸣鲁. 基于Mathews稳定图法的采场暴露面积确定[J]. 现代矿业, 2015,(6):8-10, 14.

    Yin Tubing, Zhang Minglu. Determination on the exposure area in stope based on Mathews stability graphic method [J]. Modern Mining, 2015 (6) : 4.
    [16] 陶雪芬. 湖南柿竹园多金属矿地压监测系统研究[D]. 武汉: 武汉理工大学, 2010.

    Tao Xuefen. Study on ground pressure monitoring system of Shizhuyuan polymetallic ore in Hunan province[D]. Wuhan: Wuhan University of Technology, 2010.
    [17] 周小龙. 高阶段两步回采采场地压动态演化规律及其结构优化研究[D]. 北京: 北京科技大学, 2020.

    Zhou Xiaolong. Study on dynamic evolution rule of ground pressure and optimization of stope structure in high-level two-step mining [D]. Beijing: University of Science and Technology Beijing, 2020.
  • 加载中
图(6) / 表(8)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  20
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-20
  • 网络出版日期:  2023-11-04
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回