Optimization of stope structure parameters based on Mathews and FLAC3D
-
摘要: 以攀西某地下矿山为例,基于Mathews稳定图法和经验类比法估算采场暴露面积,推荐采场顶板允许暴露面积为800~1200 m2,矿体侧帮允许暴露面积为4000~5000 m2。基于FLAC3D数值模拟分析优化采场结构参数,结果表明,随采场长度和阶段高度增大,采场周围的最大拉应力、最大压应力和最大剪应力都呈增加趋势。结合矿山现有开拓系统,推荐攀西某地下矿山阶段高度为60 m,采场长度为60 m。
-
关键词:
- 地下矿山 /
- 采场结构参数 /
- Mathews稳定图法 /
- FLAC3D数值模拟
Abstract: Taking an underground mine in Panxi as an example, the exposed area of the stope was estimated based on Mathews stability diagram method and empirical analogy method. It is recommended that the allowable exposed area of the stope roof is 800 to 1200 square meters, and the allowable exposed area of the ore body side is 4000 to 5000 square meters. Based on FLAC3D numerical simulation analysis, the stope structure parameters were optimized. The results show that with the increase of stope length and stage height, the maximum tensile stress, maximum compressive stress and maximum shear stress around the stope increase. Combined with the existing development system of the mine, it is recommended that the stage height of an underground mine in Panxi is 60 meters and the length of the stope is 60 meters. -
图 1 Trueman扩展的Mathews稳定图(2000)[14]
Figure 1. Trueman extended Mathews stability graph (2000)
表 1 Q值系统评分结果
Table 1. Q-value system rating results
岩体 RQD
/%Jn Jr Ja Jw SRF Q值 质量描述 岩体等级 辉长岩 51 6 1 1 0.66 1.0 5.61 一般 5 表 2 稳定数N计算结果
Table 2. Calculation results of stable number N
岩石名称 Q′值 A C N LogN 辉长岩 顶板帮 5.61 1.0 4.3 13.2676 1.1228 侧帮 5.61 1.0 4.3 9.6492 0.9845 表 3 Mathews稳定图法估算的采场暴露面积
Table 3. Estimation of exposed area of mining stope using Mathews stability map method
岩石名称 部位 形状因子S/m 暴露面积/m2 备注 辉长岩 顶板 7.14 1000 近似值 侧帮 17.03 4600 近似值 辉长岩
(RQD增加10%)顶板 9.25 1300 近似值 侧帮 18.51 5000 近似值 辉长岩
(RQD减少10%)顶板 6.07 850 近似值 侧帮 16.29 4400 近似值 辉长岩
(RQD减少20%)顶板 5.01 700 近似值 侧帮 15.40 4160 近似值 表 4 不同节理裂隙程度的辉长岩暴露面积值
Table 4. Exposed area values of gabbro with different joint fissure degrees
岩
性部位 节理不发育
(或充填质量较好)节理中等发育
(或充填质量中等)节理较发育
(或充填质量较差)辉
长
岩顶 板 1200 1000 800 侧 帮 5000 4600 4000 表 5 数值模拟计算所用的材料物理力学参数
Table 5. Physical and mechanical parameters of materials used in numerical simulation
名 称块体密度/
(g·cm−3)变形模量
/GPa泊松比 单轴抗压
/MPa抗拉强度
/MPa内聚力
/MPa内摩擦角
/(°)矿体 3.50 15.94 0.20 26.9 0.81 1.6 40.0 上盘 3.09 14.96 0.22 25.5 0.60 1.75 40.5 下盘 2.93 14.12 0.23 26.6 0.60 1.50 42.0 表 6 矿房及矿柱合理参数研究计算方案
Table 6. Research and calculation scheme of reasonable parameters of room and pillar
计算方案 特征说明 备 注 采场长度/m 矿房宽度/m 阶段高度/m 方案一 40 15 70 采场长度
优化方案二 60 15 70 方案三 80 15 70 方案四 60 15 60 阶段高度
优化方案五 60 15 70 方案六 60 15 80 表 7 采场长度优化模拟计算结果
Table 7. Simulation calculation results of stope length optimization
编号 采场长
度/m采场顶板 两帮 上下盘 最大拉应
力/MPa最大压应
力/MPa最大剪应
力/MPa最大位移/
mm最大拉应
力/MPa最大压应
力/MPa最大剪应
力/MPa最大位移/
mm最大拉应
力/MPa最大压应
力/MPa最大剪应
力/MPa方案一 40 0 20.27 8.21 12 0.28 13.06 4.86 31 0 15.19 1.61 方案二 60 0 24.88 9.35 15 0.62 11.32 4.49 39 0 15.15 1.55 方案三 80 0 25.49 9.73 42 0.71 12.71 5.26 45 0 14.49 1.74 表 8 采场阶段高度优化模拟计算结果
Table 8. Optimization simulation results of stope stage height
编号 阶段高
度/m采场顶板 采场两帮 上下盘 最大拉应
力/MPa最大压应
力/MPa最大剪应
力/MPa最大位移/
mm最大拉应
力/MPa最大压应
力/MPa最大剪应
力/MPa最大位移/
mm最大拉应
力/MPa最大压应
力/MPa最大剪应
力/MPa方案四 60 0 23.51 9.31 9 0.58 10.12 4.28 37 0 15.77 1.34 方案五 70 0 24.88 9.35 15 0.62 11.32 4.49 39 0 15.15 1.55 方案六 80 0 25.36 9.44 48 0.68 12.83 4.74 41 0 14.78 1.67 -
[1] 王青, 任凤玉, 顾晓薇, 等. 采矿学[M]. 北京: 冶金工业出版社, 2011.Wang Qing, Ren Fengyu, Gu Xiaowei, et al. Mining [M]. Beijing: Metallurgical Industry Press, 2011. [2] Guo Lei, Xiong Lianghui. Application and development trend of pillarless sublevel caving[J]. China Mine Engineering, 2010, 39,(6):44−48. (郭雷, 熊靓辉. 无底柱分段崩落法现状及发展趋势[J]. 中国矿山工程, 2010, 39,(6):44−48.Guo Lei, Xiong Lianghui. Application and development trend of pillarless sublevel caving [J]. China Mine Engineering, 2010 (6) : 5. [3] He Rongxing, Chen Liyuan, Ren Fengyu. Study status and development direction of loss and dilution of non-pillar sublevel caving method in China[J]. Metal Mines, 2022,(11):1-9. (何荣兴, 陈丽媛, 任凤玉. 我国无底柱分段崩落法损失贫化研究现状及发展方向[J]. 金属矿山, 2022,(11):1-9.He Rongxing, Chen Liyuan, Ren Fengyu. Study status and development direction of loss and dilution of non-pillar sublevel caving method in China [J]. Metal Mines, 2022 (11) : 9. [4] Wei Chaocheng, Zhang Ming, Luo Rui, et al. Optimization of structure parameters of empty field subsequent filling stope based on Mathews graphical method[J]. China Mining Magazine, 2022,31(7):137−142. (魏超城, 张明, 罗瑞, 等. 基于Mathews图解法的空场嗣后充填采场结构参数优化研究[J]. 中国矿业, 2022,31(7):137−142.Wei Chaocheng, Zhang Ming, Luo Rui, et al. Optimization of structure parameters of empty field subsequent filling stope based on Mathews graphical method [J]. China Mining Magazine, 2022, 31 (7) : 6. [5] Chen Lin, Huang Mingqing, Tang Shaohui, et al. Optimization and stability analysis of stope structure parameters of large-diameter deep-hole open stoping with subsequent filling[J]. Metal Mines, 2022,(11):44−51. (陈霖, 黄明清, 唐绍辉, 等. 大直径深孔空场嗣后充填法采场结构参数优化及稳定性分析[J]. 金属矿山, 2022,(11):44−51.Chen Lin, Huang Mingqing, Tang Shaohui, et al. Optimization and stability analysis of stope structure parameters of large-diameter deep-hole open stoping with subsequent filling [J]. Metal Mines, 2022 (11) : 8. [6] Ma Junsheng, Ren Gaofeng, Zhang Congrui, et al. Research on the optimization of stope span based on stability chart method and numerical simulation[J]. China Mine Engineering, 2017,46(6):7-14. (马俊生, 任高峰, 张聪瑞, 等. 基于稳定性图表法和数值模拟的采场跨度优化研究[J]. 中国矿山工程, 2017,46(6):7-14.Ma Junsheng, Ren Gaofeng, Zhang Congrui, et al. Research on the optimization of stope span based on stability chart method and numerical simulation [J]. China Mine Engineering, 2017, 46 (6) : 8. [7] Yu Haihua, Song Weidong, Tang Yanan, et al. Optimization of stope structure parameters and filling blending ratio for stage open stoping with subsequent filling[J]. Mining Research and Development, 2012,(6):10−14. (余海华, 宋卫东, 唐亚男, 等. 阶段空场嗣后充填法采场结构参数及充填配比优化[J]. 矿业研究与开发, 2012,(6):10−14.Yu Haihua, Song Weidong, Tang Yanan, et al. Optimization of stope structure parameters and filling blending ratio for stage open stoping with subsequent filling [J]. Mining Research and Development, 2012 (6) : 5. [8] Tang Lizhong, Deng Lifan, Jian Yinghua. Optimization of stope structure parameters of sublevel open stoping with subsequent filling mining[J]. Gold Science and Technology, 2016,24(2):8-13. (唐礼忠, 邓丽凡, 翦英骅. 分段空场嗣后充填采矿法采场结构参数优化研究[J]. 黄金科学技术, 2016,24(2):8-13.Tang Lizhong, Deng Lifan, Jian Yinghua. Optimization of stope structure parameters of sublevel open stoping with subsequent filling mining [J]. Gold Science and Technology, 2016, 24 (2): 6. [9] Liu Jiandong, Xie Lianku, Cao Hui. Study on structural parameters optimization and stability of stope for large-scale backfill mining[J]. Metal Mine, 2018,(12):10-13. (刘建东, 解联库, 曹辉. 大规模充填采矿采场稳定性研究与结构参数优化[J]. 金属矿山, 2018,(12):10-13.Liu Jiandong, Xie Lianku, Cao Hui. Study on structural parameters optimization and stability of stope for large-scale backfill mining [J]. Metal Mine, 2018 (12) : 4. [10] Shao Yaping, Cui Song, Chen Yin, et al. Study on optimization of stope structural parameters of downward medium deep hole open stoping with subsequent filling[J]. China Mining Magazine, 2020,29(S02):329-335. (邵亚平, 崔松, 陈寅, 等. 下行中深孔空场嗣后充填采场结构参数优化研究[J]. 中国矿业, 2020,29(S02):329-335.Shao Yaping, Cui Song, Chen Yin, et al. Study on optimization of stope structural parameters of downward medium deep hole open stoping with subsequent filling [J]. China Mining Magazine, 2020, 29 (S02) : 7. [11] Hao Yimin, Song Weidong, Zhang Kai, et al. Optimization study on stope structural parameters of sublevel open stoping method with backfill[J]. Mining Research and Development, 2020,40(3):15-19. (郝益民, 宋卫东, 张凯, 等. 阶段空场嗣后充填采场结构参数优化研究[J]. 矿业研究与开发, 2020,40(3):15-19.Hao Yimin, Song Weidong, Zhang Kai, et al. Optimization study on stope structural parameters of sublevel open stoping method with backfill [J]. Mining Research and Development, 2020, 40 (3) : 5. [12] Jia Xueyuan, Qiao Dengpan, He Mingsheng, et al. Study on structural parameters of stope with sublevel open stope and subsequent filling in Luodang mine[J]. Nonferrous Metals (Mine Part), 2021,73(6):93−98. (贾学元, 乔登攀, 何名声, 等. 落凼矿分段空场嗣后充填法采场结构参数研究[J]. 有色金属(矿山部分), 2021,73(6):93−98.Jia Xueyuan, Qiao Dengpan, He Mingsheng, et al. Study on structural parameters of stope with sublevel open stope and subsequent filling in Luodang mine [J]. Nonferrous Metals (Mine Part), 2021, 73 (6) : 93-98. [13] Ma Jinya, Liao Jiubo, Wang Xiaotian. Research on stope structure parameters of stage open stoping with subsequent filling in Huangshaping mine[J]. Mining Technology, 2022,22(4):1-3. (马金亚, 廖九波, 王筱添. 黄沙坪矿区阶段空场嗣后充填法采场结构参数研究[J]. 采矿技术, 2022,22(4):1-3.Ma Jinya, Liao Jiubo, Wang Xiaotian. Research on stope structure parameters of stage open stoping with subsequent filling in Huangshaping mine [J]. Mining Technology, 2022, 22 (4) : 3. [14] Xiao Jun. Application of Mathews stability diagram method in determining the exposed area of mine stope[J]. Xinjiang Nonferrous Metals, 2013,36(2):19-20. (肖军. Mathews稳定图法在确定矿山采场暴露面积中的应用[J]. 新疆有色金属, 2013,36(2):19-20.Xiaojun. Application of Mathews stability diagram method in determining the exposed area of mine stope [J]. Xinjiang Nonferrous Metals, 2013, 36 (2) : 2. [15] Yin Tubing, Zhang Minglu. Determination on the exposure area in stope based on Mathews stability graphic method[J]. Modern Mining, 2015,(6):8-10, 14. (尹土兵, 张鸣鲁. 基于Mathews稳定图法的采场暴露面积确定[J]. 现代矿业, 2015,(6):8-10, 14.Yin Tubing, Zhang Minglu. Determination on the exposure area in stope based on Mathews stability graphic method [J]. Modern Mining, 2015 (6) : 4. [16] 陶雪芬. 湖南柿竹园多金属矿地压监测系统研究[D]. 武汉: 武汉理工大学, 2010.Tao Xuefen. Study on ground pressure monitoring system of Shizhuyuan polymetallic ore in Hunan province[D]. Wuhan: Wuhan University of Technology, 2010. [17] 周小龙. 高阶段两步回采采场地压动态演化规律及其结构优化研究[D]. 北京: 北京科技大学, 2020.Zhou Xiaolong. Study on dynamic evolution rule of ground pressure and optimization of stope structure in high-level two-step mining [D]. Beijing: University of Science and Technology Beijing, 2020. -