Analysis and research on cover thickness of non-pillar sublevel caving method in an iron mine in Panxi
-
摘要: 针对攀西某铁矿山露天转地下崩落法开采覆盖层合理厚度的确定问题,采用相似模型试验与数值模拟相结合的方式,分析研究了放矿过程中不同厚度覆盖层颗粒的运动速度、轨迹及覆盖层整体的沉降变化情况。结果表明,数值模拟结果与室内相似材料试验匹配程度高,覆盖层35、40 m时,表面起伏角度小,结构完整,均能满足矿山安全生产需要。结合安全规程,覆盖层厚度取40 m更安全、合理。Abstract: Aiming at solving the problem of determining the reasonable thickness of the overburden layer in the conversion of open-pit to underground caving mining of the hanging wall ore body in an iron mine in Panxi, the Similarity Model test and Numerical Simulation were used to analyze and study the movement speed and trajectory of the overburden particles with different thicknesses during the ore drawing process and the settlement change of the whole overburden layer. The results show that the numerical simulation results are highly matched with the indoor similar material test. When the overburden layer is 35 m and 40 m, the surface fluctuation angle is small and the structure is complete, which can meet the needs of mine safety production. Combined with the safety regulations, it is safer and more reasonable to take 40 m as the thickness of the covering layer.
-
Key words:
- ore /
- open-air to underground /
- hanging wall ore body /
- covering layer /
- Numerical Simulation /
- Similar Material test
-
表 1 矿石及覆盖层颗粒级配
Table 1. Particle gradation of ore and covering layer
现场矿岩粒径/m 室内矿岩粒径/cm 矿石配比/% 覆盖层配比/% >0.6 >6 0 10 0.4~0.6 4~6 23 17 0.2~0.4 2~4 25 11 0.1~0.2 1~2 25 20 0.05~0.1 0.5~1 18 30 表 2 PFC2D模型参数
Table 2. PFC2D model parameters
岩石类型 颗粒法向接触刚度/(GN·m−1) 颗粒切向接触刚度/(GN·m−1) 法向接触强度/MPa 切向接触强度/MPa 摩擦系数 重力加速度 覆盖层 4 1.0 1.8 12 0.3 9.8 矿石 6 1.5 1.8 12 0.3 9.8 -
[1] Wang Yunmin, Lu Yugen, Sun Guoquan. Study on the law of rock movement and surface subsidence by deep mining with sublevel caving[J]. Metal Mine, 2015,(6):6−9. (王运敏, 陆玉根, 孙国权. 崩落法深部开采岩移及地表塌陷规律分析研究[J]. 金属矿山, 2015,(6):6−9. doi: 10.3969/j.issn.1001-1250.2015.06.002Wang Yunmin, Lu Yugen, Sun Guoquan. Study on the law of rock movement and surface subsidence by deep mining with sublevel caving [J]. Metal Mine, 2015(6): 6-9. doi: 10.3969/j.issn.1001-1250.2015.06.002 [2] Song Hua, Ren Gaofeng, Ren Shaofeng, et al. Application study of pillarless sublevel caving method in transition from open pit to underground mining[J]. Metal Mine, 2011,(7):36−38. (宋华, 任高峰, 任少峰, 等. 无底柱分段崩落法在露天转地下矿山的应用研究[J]. 金属矿山, 2011,(7):36−38.Song Hua, Ren Gaofeng, Ren Shaofeng, et al.Application study of pillarless sublevel caving method in transition from open pit to underground mining [J]. Metal Mine, 2011(7): 36-38. [3] Li Nan, Ren Fengyu, Zhao Yunfeng, et al. Study on the formation of overburden layer during the transition from open-pit to underground mining in Xiaowanggou iron mine[J]. Metal Mine, 2010,(12):9−11. (李楠, 任凤玉, 赵云峰, 等. 小汪沟铁矿露天转地下覆盖层形成方法研究[J]. 金属矿山, 2010,(12):9−11.Li Nan, Ren Fengyu, Zhao Yunfeng, et al. Study on the formation of overburden layer during the transition from open-pit to underground mining in Xiaowanggou iron mine [J]. Metal Mine, 2010(12): 9-11. [4] Meng Guifang. The current situation of open-pit to underground mining at home and abroad[J]. China Nonferrous Metals, 2008,(22):70−71. (孟桂芳. 国内外露天转地下开采现状[J]. 中国有色金属, 2008,(22):70−71.Meng Guifang. The current situation of open-pit to underground mining at home and abroad[J]. China Nonferrous Metals, 2008 ( 22 ) : 70 - 71. [5] Huang Xingyi. Research on overburden layer thickness of no-pillar sublevel caving in Jianshan iron mine[J]. Nonferrous Metals Design, 2011,38(3):6−10. (黄兴益. 尖山铁矿无底柱分段崩落法覆盖层厚度的研究[J]. 有色金属设计, 2011,38(3):6−10. doi: 10.3969/j.issn.1004-2660.2011.03.002Huang Xingyi. Research on overburden layer thickness of no-pillar sublevel caving in Jianshan iron mine [J]. Nonferrous Metals Design, 2011, 38(3): 6-10. doi: 10.3969/j.issn.1004-2660.2011.03.002 [6] He Jiafeng, Chen Xingming, Lei Gang, et al. Simulation study on ore overburden process by sublevel caving method[J]. Non-ferrous Metal, 2016,68(3):5−8. (何佳峰, 陈星明, 雷刚, 等. 某铁矿无底柱分段崩落法矿石覆盖层形成模拟研究[J]. 有色金属(矿山部分), 2016,68(3):5−8.He Jiafeng, Chen Xingming, Lei Gang, et al. Simulation study on ore overburden process by sublevel caving method [J]. Non-ferrous Metal, 2016, 68(3): 5-8. [7] Wang Ping, Li Bin, Li Yan, et al. Numerical simulation of ore drawing under non-pillar sublevel caving method[J]. Mining Research and Development, 2013,33(6):4. (王平, 李彬, 李艳, 等. 无底柱分段崩落法放矿数值模拟[J]. 矿业研究与开发, 2013,33(6):4. doi: 10.13827/j.cnki.kyyk.2013.06.004Wang Ping, Li Bin, Li Yan, et al. Numerical simulation of ore drawing under non-pillar sublevel caving method [J]. Mining Research and Development, 2013, 33(6): 4. doi: 10.13827/j.cnki.kyyk.2013.06.004 [8] Zhu Huabi, Tao Ganqiang. Study some flow process of caving ore-rock by Numerical Simulation[J]. Science Technology and Engineering, 2010,10(10):2438−2441. (朱华碧, 陶干强. 崩落放矿散体流动过程数值模拟研究[J]. 科学技术与工程, 2010,10(10):2438−2441. doi: 10.3969/j.issn.1671-1815.2010.10.037Zhu Huabi, Tao Ganqiang. Study some flow process of caving ore-rock by nNumerical simulation[J]. Science Technology and Engineering, 2010, 10(10): 2438-2441. doi: 10.3969/j.issn.1671-1815.2010.10.037 -