中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

后处理对退火态Ti75合金组织与性能的影响

尹艳超 李龙腾 吕逸帆 孙志杰 余巍 蒋鹏

尹艳超, 李龙腾, 吕逸帆, 孙志杰, 余巍, 蒋鹏. 后处理对退火态Ti75合金组织与性能的影响[J]. 钢铁钒钛, 2023, 44(5): 68-75. doi: 10.7513/j.issn.1004-7638.2023.05.011
引用本文: 尹艳超, 李龙腾, 吕逸帆, 孙志杰, 余巍, 蒋鹏. 后处理对退火态Ti75合金组织与性能的影响[J]. 钢铁钒钛, 2023, 44(5): 68-75. doi: 10.7513/j.issn.1004-7638.2023.05.011
Yin Yanchao, Li Longteng, Lü Yifan, Sun Zhijie, Yu Wei, Jiang Peng. Effect of post heat treatment on the microstructure and properties of as-annealed Ti75 alloy[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 68-75. doi: 10.7513/j.issn.1004-7638.2023.05.011
Citation: Yin Yanchao, Li Longteng, Lü Yifan, Sun Zhijie, Yu Wei, Jiang Peng. Effect of post heat treatment on the microstructure and properties of as-annealed Ti75 alloy[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 68-75. doi: 10.7513/j.issn.1004-7638.2023.05.011

后处理对退火态Ti75合金组织与性能的影响

doi: 10.7513/j.issn.1004-7638.2023.05.011
基金项目: 郑洛新自创区产业集群专项(201200211400)
详细信息
    作者简介:

    尹艳超,1989年出生,男,河南扶沟人,本科,工程师,研究方向:钛合金材料及其结构完整性,E-mail:alvinyin@sina.cn

  • 中图分类号: TF823,TG146.2

Effect of post heat treatment on the microstructure and properties of as-annealed Ti75 alloy

  • 摘要: 为了研究后处理对退火态Ti75合金性能的影响,采用不同后处理温度和冷却速率对退火态Ti75合金进行处理,利用OM、SEM分析了显微组织演变,并研究了显微组织对拉伸、冲击性能的影响。结果表明,后处理温度较低时,等轴α相的体积分数无明显变化;当温度升至足够高时,等轴α相开始溶解,其体积分数随着温度的升高逐渐降低。退火态Ti75合金经750~950 ℃处理后空冷的强度、冲击韧性变化趋势与炉冷基本相同。屈服强度、抗拉强度随后处理温度的升高呈现先降低后升高又降低的趋势,强度升高的主要原因是β转变组织中数量较多的细小α相难以变形;冲击韧性在低温区无明显变化,而后随温度的升高而逐渐升高。退火态Ti75合金经相同温度处理后空冷的强度高于炉冷;在低温区,空冷后的冲击韧性高于炉冷,高温区则呈现相反的规律。
  • 图  1  退火态Ti75合金的显微组织

    Figure  1.  Microstructure of as annealed Ti75 alloy

    图  2  退火态Ti75合金经不同温度处理后空冷的金相照片

    Figure  2.  Microstructure of as annealed Ti75 alloy after annealing at different temperatures and air cooling

    图  3  退火态Ti75合金经不同温度处理后空冷的SEM形貌

    Figure  3.  SEM images of as annealed Ti75 alloy after annealing at different temperatures and air cooling

    图  4  退火态Ti75合金经不同工艺处理后组织中等轴α相的体积分数

    Figure  4.  Volume fraction of equiaxed α phase of as annealed Ti75 alloy after different post heat treatments

    图  5  退火态Ti75合金经不同温度处理后炉冷的金相照片

    Figure  5.  Microstructure of as annealed Ti75 alloy after annealing at different temperatures and furnace cooling

    图  6  退火态Ti75合金经不同温度处理后炉冷的SEM形貌

    Figure  6.  SEM images of as annealed Ti75 alloy after annealing at different temperatures and furnace cooling

    图  7  退火态Ti75合金经不同工艺处理后的拉伸性能

    Figure  7.  Tensile properties of as annealed Ti75 alloy after different post heat treatments

    图  8  退火态Ti75合金经不同工艺处理后的冲击性能

    Figure  8.  Impact toughness of as annealed Ti75 alloy after different post heat treatments

    表  1  Ti75合金化学成分

    Table  1.   Chemical composition of Ti75 alloy ingot %

    TiAlMoZrNHCOFeSi
    Bal.2.871.872.150.005<0.0010.00780.0990.1760.033
    下载: 导出CSV

    表  2  Ti75合金后处理工艺

    Table  2.   Post heat treatment process used for as annealed Ti75 alloy

    编号后处理工艺
    温度/ ℃时间/h冷却方式
    HT17502AC
    HT27502FC
    HT38002AC
    HT48002FC
    HT58502AC
    HT68502FC
    HT79002AC
    HT89002FC
    HT99252AC
    HT109252FC
    HT119502AC
    HT129502FC
    下载: 导出CSV
  • [1] Hai Minna, Huang Fan, Wang Yongmei. Brief analysis of the application of titanium and titanium alloy in marine equipment[J]. Metal World, 2021,(5):16−21. (海敏娜, 黄帆, 王永梅. 浅析钛及钛合金在海洋装备上的应用[J]. 金属世界, 2021,(5):16−21.

    Hai Minna, Huang Fan, Wang Yongmei. Brief analysis of the application of titanium and titanium alloy in marine equipment[J]. Metal World, 2021, (5): 16-21.
    [2] Gorynin I V. Titanium alloy for marine application[J]. Materials Science and Engineering A, 1999,263(2):112−116. doi: 10.1016/S0921-5093(98)01180-0
    [3] Christoph Leyens, Manfred Peters. Titanium and titanium alloys: Fundamentals and application[M]. Weinheim: Wiley, 2003.
    [4] 常辉, 廖志谦, 王向东. 海洋工程钛金属材料[M]. 北京: 化学工业出版社, 2017.

    Chang Hui, Liao Zhiqian, Wang Xiangdong. Titanium alloys for marine applications[M]. Beijing: Chemical Industry Press, 2017.
    [5] Yin Yanchao, Liu Jia, Zhang Shuaifeng, et al. Influence of aging treatment on microstructure and mechanical properties of Ti75 titanium alloy[J]. Titanium Industry Progress, 2023,40(1):21−26. (尹艳超, 刘甲, 张帅锋, 等. 时效工艺对Ti75合金显微组织及力学性能的影响[J]. 钛工业进展, 2023,40(1):21−26.

    Yin Yanchao, Liu Jia, Zhang Shuaifeng, et al. Influence of aging treatment on microstructure and mechanical properties of Ti75 titanium alloy[J]. Titanium Industry Progress, 2023, 40(1): 21-26.
    [6] Jiang Peng, Wang Qi, Zhang Binbin, et al. Application of titanium alloy materials for the pressure-resistant structure of deep diving equipment[J]. Strategic Study of CAE, 2019,21(6):95−101. (蒋鹏, 王启, 张斌斌, 等. 深海装备耐压结构用钛合金材料应用研究[J]. 中国工程科学, 2019,21(6):95−101. doi: 10.15302/J-SSCAE-2019.06.018

    Jiang Peng, Wang Qi, Zhang Binbin, et al. Application of titanium alloy materials for the pressure-resistant structure of deep diving equipment[J]. Strategic Study of CAE, 2019, 21 (6): 95-101. doi: 10.15302/J-SSCAE-2019.06.018
    [7] Yin Yanchao, Zhang Shuaifeng, Xu Yali, et al. Influence of pre-strain on deformation behavior of TC4 ELI titanium alloy[J]. Development and Application of Materials, 2023,38(1):66−72. (尹艳超, 张帅锋, 许亚利, 等. 预应变对TC4 ELI钛合金变形行为的影响[J]. 材料开发与应用, 2023,38(1):66−72.

    Yin Yanchao, Zhang Shuaifeng, Xu Yali, et al. Influence of pre-strain on deformation behavior of TC4 ELI titanium alloy[J]. Development and Application of Materials, 2023, 38(1): 66-72.
    [8] Liu Hongyan, Xu Xirong, Cai Na. Research on the forming process of Ti75 alloy head[J]. World Nonferrous Metals, 2019,(12):7−8. (刘鸿彦, 徐曦荣, 蔡娜. Ti75合金封头成形工艺研究[J]. 世界有色金属, 2019,(12):7−8.

    Liu Hongyan, Xu Xirong, Cai Na. Research on the forming process of Ti75 alloy head[J]. World Nonferrous Metals, 2019(12): 7-8.
    [9] Zhangjing, Song Dejun, Zhu Qiang, et al. Orthogonal finite element simulation of Ti75 tube bending at high temperature[J]. Transactions of Materials and Heat Treatment, 2020,41(6):190−196. (张静, 宋德军, 朱强, 等. Ti75管材高温弯曲成形的正交有限元模拟[J]. 材料热处理学报, 2020,41(6):190−196.

    Zhangjing, Song Dejun, Zhu Qiang, et al. Orthogonal finite element simulation of Ti75 tube bending at high temperature[J]. Transactions of Materials and Heat Treatment, 2020, 41(6): 190-196.
    [10] Cao Shouqi, He Xin, Liu Wanrong, et al. Study on laser welding technology and properties of Ti75 titanium alloy[J]. Journal of Physics: Conference Series, 2020,1622:012046. doi: 10.1088/1742-6596/1622/1/012046
    [11] Ji Dawei, Liu Yinqi, Chen Tao, et al. Research on the anisotropy of tensile properties and impact toughness of Ti75 alloy plate[J]. Development and Application of Materials, 2016,31(5):53−58. (纪大伟, 刘茵琪, 陈涛, 等. Ti75合金板材拉伸性能和冲击韧性各向异性的研究[J]. 材料开发与应用, 2016,31(5):53−58.

    Ji Dawei, Liu Yinqi, Chen Tao, et al. Research on the anisotropy of tensile properties and impact toughness of Ti75 alloy plate[J]. Development and Application of Materials, 2016, 31(5): 53-58.
    [12] Xie Yingjie, Fu Wenjie, Wang Ruining, et al. Effect of heat treatment on microstructure and mechanical properties of TA15 plates[J]. Titanium Industry Progress, 2013,30(6):26−29. (谢英杰, 付文杰, 王蕊宁, 等. 热处理对TA15钛合金中厚板材组织及力学性能的影响[J]. 钛工业进展, 2013,30(6):26−29.

    Xie Yingjie, Fu Wenjie, Wang Ruining, et al. Effect of heat treatment on microstructure and mechanical properties of TA15 plates[J]. Titanium Industry Progress, 2013, 30(6): 26-29.
    [13] Huang Sensen, Ma Yingjie, Zhang Shilin, et al. Influence of alloying elements partitioning behaviors on the microstructure and mechanical properties[J]. Acta Metallurgica Sinica, 2019,55(6):741−750. (黄森森, 马英杰, 张仕林, 等. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019,55(6):741−750.

    Huang Sensen, Ma Yingjie, Zhang Shilin, et al. Influence of alloying elements partitioning behaviors on the microstructure and mechanical properties[J]. Acta Metallurgica Sinica, 2019, 55(6): 741-750.
    [14] Zhang Zhenxuan, Lei Wen, Zhu Hong, et al. Effect of solution temperature and cooling rate on microstructure and mechanical properties of TC21 titanium alloy[J]. Hot Working Technology, 2016,45(8):217−220. (张珍宣, 雷雯, 朱红, 等. 固溶温度和冷却速率对TC21钛合金组织和力学性能的影响[J]. 热加工工艺, 2016,45(8):217−220.

    Zhang Zhenxuan, Lei Wen, Zhu Hong, et al. Effect of solution temperature and cooling rate on microstructure and mechanical properties of TC21 titanium alloy[J]. Hot Working Technology, 2016, 45(8): 217-220.
    [15] 潘金生, 仝健民, 田民波. 材料科学基础[M]. 北京: 清华大学出版社, 2011.

    Pan Jinsheng, Tong Jianmin, Tian Minbo. Fundamentals of materials science[M]. Beijing: Tsinghua University Press, 2011.
    [16] Lütjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys[J]. Materials Science and Engineering, 1998,A243:32−45.
    [17] Gerd L, James C Williams. Titanium[M]. Berlin: Springer-Verlag, 2007.
    [18] Yan Chong, Tilak Bhattacharjee, Jangho Yi, et al. Achieving bi-lamellar microstructure with both high tensile strength and large ductility in Ti-6Al-4V alloy by novel thermomechanical processing[J]. Materiallia, 2019: 100479.
    [19] 赵永庆, 陈永楠, 张学敏, 等. 钛合金相变及热处理[M]. 长沙: 中南大学出版社, 2012.

    Zhao Yongqing, Chen Yongnan, Zhang Xuemin, et al. Phase transformation and heat treatment of titanium alloys[M]. Changsha: Central South University Press, 2012.
    [20] M F Savage, J Tatalovich, M J Mills. Anisotropy in the room-temperature deformation of α-β colonies in titanium alloys: role of the α-β interface[J]. Philosophical Magazine, 2007,84(11):1127−1154.
    [21] 郑修麟. 材料的力学性能[M]. 西安: 西北工业大学出版社, 2009.

    Zheng Xiulin. Mechanical properties of materials[M]. Xi, an: Northwestern Polytechnical University Press, 2009.
    [22] Niinomi M, Kobayashi T. Toughness and microstructural factors of Ti-6Al-4V alloy[J]. Materials Science and Engineering, 1988,100:45−55. doi: 10.1016/0025-5416(88)90238-8
    [23] Niinomi M, Kobayashi T. Fracture characteristics analysis related to the microstructures in titanium alloys[J]. Materials Science and Engineering, 1996,A212:16−24.
    [24] Christophe Buirettea, Julitte Hueza, Nathalie Geyb, et al. Study of crack propagation mechanisms during charpy impact toughness tests on both equiaxed and lamellar microstructures of Ti-6Al-4V titanium alloy[J]. Materials Science and Engineering, 2014,A618:546−557.
    [25] Xu Jianwei, Zeng Weidong, Zhao Yawei, et al. Effect of microstructure evolution of the lamellar alpha on impact toughness in a two-phase titanium alloy[J]. Materials Science & Engineering, 2016,A676:434−440.
    [26] Li Shikai, Hui Songxiao, Ye Wenjun, et al. Effect of cooling rate on the microstructure and properties of TA15 ELI alloy[J]. Rare Metal Materials and Engineering, 2007,36(5):786−789. (李士凯, 惠松骁, 叶文君, 等. 冷却速度对TA15 ELI合金组织与性能的影响[J]. 稀有金属材料与工程, 2007,36(5):786−789.

    Li Shikai, Hui Songxiao, Ye Wenjun, et al. Effect of cooling rate on the microstructure and properties of TA15 ELI alloy[J]. Rare Metal Materials and Engineering, 2007, 36(5): 786-789.
    [27] Lei Lei, Zhao Yongqing, Zhao Qinyang, et al. Impact toughness and deformation modes of Ti-6Al-4V alloy with different microstructures[J]. Materials Science & Engineering, 2021,A801:140411.
    [28] Liu Rui, Hui Songxiao, Ye Wenjun, et al. Effects of cooling rate on dynamic fracture toughness for TC4 titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2010,20(1):691−694. (刘睿, 惠松骁, 叶文君, 等. 冷却速度对TC4钛合金动态断裂韧性的影响[J]. 中国有色金属学报, 2010,20(1):691−694.

    Liu Rui, Hui Songxiao, Ye Wenjun, et al. Effects of cooling rate on dynamic fracture toughness for TC4 titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(1): 691-694.
    [29] Yang Zhijun, Guo Aihong, Wu Yizhou. Microstructure evolution of Ti6321 titanium alloy during annealing treatment and its effect on impact toughness[J]. The Chinese Journal of Nonferrous Metals, 2013,23(1):512−516. (杨治军, 郭爱红, 吴义舟. Ti6321钛合金退火处理过程中组织演变及其对冲击韧性的影响[J]. 中国有色金属学报, 2013,23(1):512−516.

    Yang Zhijun, Guo Aihong, Wu Yizhou. Microstructure evolution of Ti6321 titanium alloy during annealing treatment and its effect on impact toughness[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(1): 512-516.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  245
  • HTML全文浏览量:  71
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-07
  • 网络出版日期:  2023-11-04
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回