留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

后处理对退火态Ti75合金组织与性能的影响

尹艳超 李龙腾 吕逸帆 孙志杰 余巍 蒋鹏

尹艳超, 李龙腾, 吕逸帆, 孙志杰, 余巍, 蒋鹏. 后处理对退火态Ti75合金组织与性能的影响[J]. 钢铁钒钛, 2023, 44(5): 68-75. doi: 10.7513/j.issn.1004-7638.2023.05.011
引用本文: 尹艳超, 李龙腾, 吕逸帆, 孙志杰, 余巍, 蒋鹏. 后处理对退火态Ti75合金组织与性能的影响[J]. 钢铁钒钛, 2023, 44(5): 68-75. doi: 10.7513/j.issn.1004-7638.2023.05.011
Yin Yanchao, Li Longteng, Lü Yifan, Sun Zhijie, Yu Wei, Jiang Peng. Effect of post heat treatment on the microstructure and properties of as-annealed Ti75 alloy[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 68-75. doi: 10.7513/j.issn.1004-7638.2023.05.011
Citation: Yin Yanchao, Li Longteng, Lü Yifan, Sun Zhijie, Yu Wei, Jiang Peng. Effect of post heat treatment on the microstructure and properties of as-annealed Ti75 alloy[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 68-75. doi: 10.7513/j.issn.1004-7638.2023.05.011

后处理对退火态Ti75合金组织与性能的影响

doi: 10.7513/j.issn.1004-7638.2023.05.011
基金项目: 郑洛新自创区产业集群专项(201200211400)
详细信息
    作者简介:

    尹艳超,1989年出生,男,河南扶沟人,本科,工程师,研究方向:钛合金材料及其结构完整性,E-mail:alvinyin@sina.cn

  • 中图分类号: TF823,TG146.2

Effect of post heat treatment on the microstructure and properties of as-annealed Ti75 alloy

  • 摘要: 为了研究后处理对退火态Ti75合金性能的影响,采用不同后处理温度和冷却速率对退火态Ti75合金进行处理,利用OM、SEM分析了显微组织演变,并研究了显微组织对拉伸、冲击性能的影响。结果表明,后处理温度较低时,等轴α相的体积分数无明显变化;当温度升至足够高时,等轴α相开始溶解,其体积分数随着温度的升高逐渐降低。退火态Ti75合金经750~950 ℃处理后空冷的强度、冲击韧性变化趋势与炉冷基本相同。屈服强度、抗拉强度随后处理温度的升高呈现先降低后升高又降低的趋势,强度升高的主要原因是β转变组织中数量较多的细小α相难以变形;冲击韧性在低温区无明显变化,而后随温度的升高而逐渐升高。退火态Ti75合金经相同温度处理后空冷的强度高于炉冷;在低温区,空冷后的冲击韧性高于炉冷,高温区则呈现相反的规律。
  • 图  1  退火态Ti75合金的显微组织

    Figure  1.  Microstructure of as annealed Ti75 alloy

    图  2  退火态Ti75合金经不同温度处理后空冷的金相照片

    Figure  2.  Microstructure of as annealed Ti75 alloy after annealing at different temperatures and air cooling

    图  3  退火态Ti75合金经不同温度处理后空冷的SEM形貌

    Figure  3.  SEM images of as annealed Ti75 alloy after annealing at different temperatures and air cooling

    图  4  退火态Ti75合金经不同工艺处理后组织中等轴α相的体积分数

    Figure  4.  Volume fraction of equiaxed α phase of as annealed Ti75 alloy after different post heat treatments

    图  5  退火态Ti75合金经不同温度处理后炉冷的金相照片

    Figure  5.  Microstructure of as annealed Ti75 alloy after annealing at different temperatures and furnace cooling

    图  6  退火态Ti75合金经不同温度处理后炉冷的SEM形貌

    Figure  6.  SEM images of as annealed Ti75 alloy after annealing at different temperatures and furnace cooling

    图  7  退火态Ti75合金经不同工艺处理后的拉伸性能

    Figure  7.  Tensile properties of as annealed Ti75 alloy after different post heat treatments

    图  8  退火态Ti75合金经不同工艺处理后的冲击性能

    Figure  8.  Impact toughness of as annealed Ti75 alloy after different post heat treatments

    表  1  Ti75合金化学成分

    Table  1.   Chemical composition of Ti75 alloy ingot %

    TiAlMoZrNHCOFeSi
    Bal.2.871.872.150.005<0.0010.00780.0990.1760.033
    下载: 导出CSV

    表  2  Ti75合金后处理工艺

    Table  2.   Post heat treatment process used for as annealed Ti75 alloy

    编号后处理工艺
    温度/ ℃时间/h冷却方式
    HT17502AC
    HT27502FC
    HT38002AC
    HT48002FC
    HT58502AC
    HT68502FC
    HT79002AC
    HT89002FC
    HT99252AC
    HT109252FC
    HT119502AC
    HT129502FC
    下载: 导出CSV
  • [1] Hai Minna, Huang Fan, Wang Yongmei. Brief analysis of the application of titanium and titanium alloy in marine equipment[J]. Metal World, 2021,(5):16−21. (海敏娜, 黄帆, 王永梅. 浅析钛及钛合金在海洋装备上的应用[J]. 金属世界, 2021,(5):16−21.

    Hai Minna, Huang Fan, Wang Yongmei. Brief analysis of the application of titanium and titanium alloy in marine equipment[J]. Metal World, 2021, (5): 16-21.
    [2] Gorynin I V. Titanium alloy for marine application[J]. Materials Science and Engineering A, 1999,263(2):112−116. doi: 10.1016/S0921-5093(98)01180-0
    [3] Christoph Leyens, Manfred Peters. Titanium and titanium alloys: Fundamentals and application[M]. Weinheim: Wiley, 2003.
    [4] 常辉, 廖志谦, 王向东. 海洋工程钛金属材料[M]. 北京: 化学工业出版社, 2017.

    Chang Hui, Liao Zhiqian, Wang Xiangdong. Titanium alloys for marine applications[M]. Beijing: Chemical Industry Press, 2017.
    [5] Yin Yanchao, Liu Jia, Zhang Shuaifeng, et al. Influence of aging treatment on microstructure and mechanical properties of Ti75 titanium alloy[J]. Titanium Industry Progress, 2023,40(1):21−26. (尹艳超, 刘甲, 张帅锋, 等. 时效工艺对Ti75合金显微组织及力学性能的影响[J]. 钛工业进展, 2023,40(1):21−26.

    Yin Yanchao, Liu Jia, Zhang Shuaifeng, et al. Influence of aging treatment on microstructure and mechanical properties of Ti75 titanium alloy[J]. Titanium Industry Progress, 2023, 40(1): 21-26.
    [6] Jiang Peng, Wang Qi, Zhang Binbin, et al. Application of titanium alloy materials for the pressure-resistant structure of deep diving equipment[J]. Strategic Study of CAE, 2019,21(6):95−101. (蒋鹏, 王启, 张斌斌, 等. 深海装备耐压结构用钛合金材料应用研究[J]. 中国工程科学, 2019,21(6):95−101. doi: 10.15302/J-SSCAE-2019.06.018

    Jiang Peng, Wang Qi, Zhang Binbin, et al. Application of titanium alloy materials for the pressure-resistant structure of deep diving equipment[J]. Strategic Study of CAE, 2019, 21 (6): 95-101. doi: 10.15302/J-SSCAE-2019.06.018
    [7] Yin Yanchao, Zhang Shuaifeng, Xu Yali, et al. Influence of pre-strain on deformation behavior of TC4 ELI titanium alloy[J]. Development and Application of Materials, 2023,38(1):66−72. (尹艳超, 张帅锋, 许亚利, 等. 预应变对TC4 ELI钛合金变形行为的影响[J]. 材料开发与应用, 2023,38(1):66−72.

    Yin Yanchao, Zhang Shuaifeng, Xu Yali, et al. Influence of pre-strain on deformation behavior of TC4 ELI titanium alloy[J]. Development and Application of Materials, 2023, 38(1): 66-72.
    [8] Liu Hongyan, Xu Xirong, Cai Na. Research on the forming process of Ti75 alloy head[J]. World Nonferrous Metals, 2019,(12):7−8. (刘鸿彦, 徐曦荣, 蔡娜. Ti75合金封头成形工艺研究[J]. 世界有色金属, 2019,(12):7−8.

    Liu Hongyan, Xu Xirong, Cai Na. Research on the forming process of Ti75 alloy head[J]. World Nonferrous Metals, 2019(12): 7-8.
    [9] Zhangjing, Song Dejun, Zhu Qiang, et al. Orthogonal finite element simulation of Ti75 tube bending at high temperature[J]. Transactions of Materials and Heat Treatment, 2020,41(6):190−196. (张静, 宋德军, 朱强, 等. Ti75管材高温弯曲成形的正交有限元模拟[J]. 材料热处理学报, 2020,41(6):190−196.

    Zhangjing, Song Dejun, Zhu Qiang, et al. Orthogonal finite element simulation of Ti75 tube bending at high temperature[J]. Transactions of Materials and Heat Treatment, 2020, 41(6): 190-196.
    [10] Cao Shouqi, He Xin, Liu Wanrong, et al. Study on laser welding technology and properties of Ti75 titanium alloy[J]. Journal of Physics: Conference Series, 2020,1622:012046. doi: 10.1088/1742-6596/1622/1/012046
    [11] Ji Dawei, Liu Yinqi, Chen Tao, et al. Research on the anisotropy of tensile properties and impact toughness of Ti75 alloy plate[J]. Development and Application of Materials, 2016,31(5):53−58. (纪大伟, 刘茵琪, 陈涛, 等. Ti75合金板材拉伸性能和冲击韧性各向异性的研究[J]. 材料开发与应用, 2016,31(5):53−58.

    Ji Dawei, Liu Yinqi, Chen Tao, et al. Research on the anisotropy of tensile properties and impact toughness of Ti75 alloy plate[J]. Development and Application of Materials, 2016, 31(5): 53-58.
    [12] Xie Yingjie, Fu Wenjie, Wang Ruining, et al. Effect of heat treatment on microstructure and mechanical properties of TA15 plates[J]. Titanium Industry Progress, 2013,30(6):26−29. (谢英杰, 付文杰, 王蕊宁, 等. 热处理对TA15钛合金中厚板材组织及力学性能的影响[J]. 钛工业进展, 2013,30(6):26−29.

    Xie Yingjie, Fu Wenjie, Wang Ruining, et al. Effect of heat treatment on microstructure and mechanical properties of TA15 plates[J]. Titanium Industry Progress, 2013, 30(6): 26-29.
    [13] Huang Sensen, Ma Yingjie, Zhang Shilin, et al. Influence of alloying elements partitioning behaviors on the microstructure and mechanical properties[J]. Acta Metallurgica Sinica, 2019,55(6):741−750. (黄森森, 马英杰, 张仕林, 等. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019,55(6):741−750.

    Huang Sensen, Ma Yingjie, Zhang Shilin, et al. Influence of alloying elements partitioning behaviors on the microstructure and mechanical properties[J]. Acta Metallurgica Sinica, 2019, 55(6): 741-750.
    [14] Zhang Zhenxuan, Lei Wen, Zhu Hong, et al. Effect of solution temperature and cooling rate on microstructure and mechanical properties of TC21 titanium alloy[J]. Hot Working Technology, 2016,45(8):217−220. (张珍宣, 雷雯, 朱红, 等. 固溶温度和冷却速率对TC21钛合金组织和力学性能的影响[J]. 热加工工艺, 2016,45(8):217−220.

    Zhang Zhenxuan, Lei Wen, Zhu Hong, et al. Effect of solution temperature and cooling rate on microstructure and mechanical properties of TC21 titanium alloy[J]. Hot Working Technology, 2016, 45(8): 217-220.
    [15] 潘金生, 仝健民, 田民波. 材料科学基础[M]. 北京: 清华大学出版社, 2011.

    Pan Jinsheng, Tong Jianmin, Tian Minbo. Fundamentals of materials science[M]. Beijing: Tsinghua University Press, 2011.
    [16] Lütjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys[J]. Materials Science and Engineering, 1998,A243:32−45.
    [17] Gerd L, James C Williams. Titanium[M]. Berlin: Springer-Verlag, 2007.
    [18] Yan Chong, Tilak Bhattacharjee, Jangho Yi, et al. Achieving bi-lamellar microstructure with both high tensile strength and large ductility in Ti-6Al-4V alloy by novel thermomechanical processing[J]. Materiallia, 2019: 100479.
    [19] 赵永庆, 陈永楠, 张学敏, 等. 钛合金相变及热处理[M]. 长沙: 中南大学出版社, 2012.

    Zhao Yongqing, Chen Yongnan, Zhang Xuemin, et al. Phase transformation and heat treatment of titanium alloys[M]. Changsha: Central South University Press, 2012.
    [20] M F Savage, J Tatalovich, M J Mills. Anisotropy in the room-temperature deformation of α-β colonies in titanium alloys: role of the α-β interface[J]. Philosophical Magazine, 2007,84(11):1127−1154.
    [21] 郑修麟. 材料的力学性能[M]. 西安: 西北工业大学出版社, 2009.

    Zheng Xiulin. Mechanical properties of materials[M]. Xi, an: Northwestern Polytechnical University Press, 2009.
    [22] Niinomi M, Kobayashi T. Toughness and microstructural factors of Ti-6Al-4V alloy[J]. Materials Science and Engineering, 1988,100:45−55. doi: 10.1016/0025-5416(88)90238-8
    [23] Niinomi M, Kobayashi T. Fracture characteristics analysis related to the microstructures in titanium alloys[J]. Materials Science and Engineering, 1996,A212:16−24.
    [24] Christophe Buirettea, Julitte Hueza, Nathalie Geyb, et al. Study of crack propagation mechanisms during charpy impact toughness tests on both equiaxed and lamellar microstructures of Ti-6Al-4V titanium alloy[J]. Materials Science and Engineering, 2014,A618:546−557.
    [25] Xu Jianwei, Zeng Weidong, Zhao Yawei, et al. Effect of microstructure evolution of the lamellar alpha on impact toughness in a two-phase titanium alloy[J]. Materials Science & Engineering, 2016,A676:434−440.
    [26] Li Shikai, Hui Songxiao, Ye Wenjun, et al. Effect of cooling rate on the microstructure and properties of TA15 ELI alloy[J]. Rare Metal Materials and Engineering, 2007,36(5):786−789. (李士凯, 惠松骁, 叶文君, 等. 冷却速度对TA15 ELI合金组织与性能的影响[J]. 稀有金属材料与工程, 2007,36(5):786−789.

    Li Shikai, Hui Songxiao, Ye Wenjun, et al. Effect of cooling rate on the microstructure and properties of TA15 ELI alloy[J]. Rare Metal Materials and Engineering, 2007, 36(5): 786-789.
    [27] Lei Lei, Zhao Yongqing, Zhao Qinyang, et al. Impact toughness and deformation modes of Ti-6Al-4V alloy with different microstructures[J]. Materials Science & Engineering, 2021,A801:140411.
    [28] Liu Rui, Hui Songxiao, Ye Wenjun, et al. Effects of cooling rate on dynamic fracture toughness for TC4 titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2010,20(1):691−694. (刘睿, 惠松骁, 叶文君, 等. 冷却速度对TC4钛合金动态断裂韧性的影响[J]. 中国有色金属学报, 2010,20(1):691−694.

    Liu Rui, Hui Songxiao, Ye Wenjun, et al. Effects of cooling rate on dynamic fracture toughness for TC4 titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(1): 691-694.
    [29] Yang Zhijun, Guo Aihong, Wu Yizhou. Microstructure evolution of Ti6321 titanium alloy during annealing treatment and its effect on impact toughness[J]. The Chinese Journal of Nonferrous Metals, 2013,23(1):512−516. (杨治军, 郭爱红, 吴义舟. Ti6321钛合金退火处理过程中组织演变及其对冲击韧性的影响[J]. 中国有色金属学报, 2013,23(1):512−516.

    Yang Zhijun, Guo Aihong, Wu Yizhou. Microstructure evolution of Ti6321 titanium alloy during annealing treatment and its effect on impact toughness[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(1): 512-516.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  30
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-07
  • 网络出版日期:  2023-11-04
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回