中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焊后热处理对钛合金对接板疲劳寿命影响的数值模拟

罗家元 张宇翔 吕晨轲

罗家元, 张宇翔, 吕晨轲. 焊后热处理对钛合金对接板疲劳寿命影响的数值模拟[J]. 钢铁钒钛, 2023, 44(5): 76-83. doi: 10.7513/j.issn.1004-7638.2023.05.012
引用本文: 罗家元, 张宇翔, 吕晨轲. 焊后热处理对钛合金对接板疲劳寿命影响的数值模拟[J]. 钢铁钒钛, 2023, 44(5): 76-83. doi: 10.7513/j.issn.1004-7638.2023.05.012
Luo Jiayuan, Zhang Yuxiang, Lü Chenke. Numerical simulation of the effect of post-welding heat treatment on fatigue life of titanium alloy butt plate[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 76-83. doi: 10.7513/j.issn.1004-7638.2023.05.012
Citation: Luo Jiayuan, Zhang Yuxiang, Lü Chenke. Numerical simulation of the effect of post-welding heat treatment on fatigue life of titanium alloy butt plate[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 76-83. doi: 10.7513/j.issn.1004-7638.2023.05.012

焊后热处理对钛合金对接板疲劳寿命影响的数值模拟

doi: 10.7513/j.issn.1004-7638.2023.05.012
基金项目: 重庆市技术创新与应用发展专项重点项目(cstc2021jscx-dxwtBX0022);国家重点研发计划项目(2020YFF0404209);重庆市博士后特别资助项目(Xm2017034)。
详细信息
    作者简介:

    罗家元,1978年出生,男,湖北黄冈人,博士,副教授,主要研究方向:残余应力评估及消除、结构疲劳寿命分析,E-mail:jiayuan_luo@126.com

    通讯作者:

    张宇翔,1998年出生,男,河南驻马店人,硕士,主要研究方向:焊接残余应力评估及结构疲劳寿命分析,E-mail:342210383@qq.com

  • 中图分类号: TF823,TG405

Numerical simulation of the effect of post-welding heat treatment on fatigue life of titanium alloy butt plate

  • 摘要: 基于有限元软件建立了考虑蠕变应力松弛效应的30 mm厚TC4钛合金对接板的热—弹—塑性有限元模型,采用该模型模拟了TC4钛合金对接板电子束焊接过程中的温度场与应力场,对比了3种焊后热处理工艺下对接板内部残余应力分布情况,得出最优的焊后热处理工艺。通过疲劳分析软件fe-safe分析了焊后热处理对于对接板疲劳性能的影响。结果表明,数值模拟得到的残余应力分布情况较为准确。对接板经过700 ℃$ \times $2 h焊后热处理,其内部横向、纵向残余应力基本完全消除,峰值分别为28、46.3 MPa。蠕变效应在焊后热处理消除残余应力的过程中起重要作用,经过焊后热处理,对接板焊缝与热影响区的疲劳安全系数由0.192提升至0.7左右。
  • 图  1  TC4钛合金对接板网格结构

    Figure  1.  Grid structure of TC4 titanium alloy butt plate

    图  2  热循环曲线

    Figure  2.  Thermal cycle curve

    图  3  熔池对比

    Figure  3.  Molten pool comparison

    图  4  残余应力分布云图

    Figure  4.  Residual stress distribution cloud diagram

    图  5  路径分布

    Figure  5.  Path distribution diagram

    图  6  残余应力分布曲线

    Figure  6.  Distribution curve of residual stress

    图  7  焊后热处理后对接板内部残余应力曲线

    Figure  7.  Internal residual stress curve of butt plate after post-welding heat treatment

    图  8  纵向残余应力变化曲线

    Figure  8.  Longitudinal residual stress curve

    图  9  焊后热处理过程中弹性应变、塑性应变及蠕变应变随时间变化曲线

    Figure  9.  Curves of elastic, plastic and creep strains with time during post-welding heat treatment

    图  10  疲劳安全系数

    Figure  10.  Fatigue safety factor

    表  1  蠕变本构方程参数

    Table  1.   Creep constitutive equation parameters

    温度/ ℃A3n2$ \alpha $Q/(J·mol−1)
    5009.764e-66.000.0028919213.78
    6009.764e-63.160.0064914632.57
    7009.764e-62.140.020719967.6
    下载: 导出CSV
  • [1] Yu Changli, Guo Qibo, Gong Xiaobo, et al. Fatigue life assessment of pressure hull of deep-sea submergence vehicle[J]. Ocean Engineering, 2022,245:110528. doi: 10.1016/j.oceaneng.2022.110528
    [2] He Yifan, Chen Donggao, Zhang Long, et al. Study on microstructure and properties of TC4 titanium alloy MIG welded ioint after heat treatment[J]. Iron Steel Vanadium Titanium, 2021,42(6):164−170. (何逸凡, 陈东高, 张龙, 等. TC4钛合金MIG焊接头热处理后组织性能研究[J]. 钢铁钒钛, 2021,42(6):164−170.

    He Yifan, Chen Donggao, Zhang Long, et al. Study on microstructure and properties of TC4 titanium alloy MIG welded ioint after heat treatment [J]. Iron Steel Vanadium Titanium, 2021, 42(6): 164-170.
    [3] Ou Peng, Cao Zengqiang, Rong Ju, et al. Molecular dynamics study on the welding behavior in dissimilar TC4-TA17 titanium alloys[J]. Materials, 2022,15(16):5606. doi: 10.3390/ma15165606
    [4] Li Dadong, Bai Wei, Deng Jian, et al. Study on vacuum electron beam welding of 50 mm thick plate TC4 and TA17 titanium alloy[J]. Iron Steel Vanadium Titanium, 2022,43(3):40−46. (李大东, 白威, 邓健, 等. 50 mm厚板TC4及TA17钛合金真空电子束焊接工艺研究[J]. 钢铁钒钛, 2022,43(3):40−46.

    Li Dadong, Bai Wei, Deng Jian, et al. Study on vacuum electron beam welding of 50 mm thick plate TC4 and TA17 titanium alloy [J]. Iron Steel Vanadium Titanium, 2022, 43(3): 40-46.
    [5] Liu Chuan, Wu Bing, Zhang Jianxun. Numerical investigation of residual stress in thick titanium alloy plate joined with electron beam welding[J]. Metallurgical and Materials Transactions, 2010,41B(5):1129−1138.
    [6] Zeng Qingji, Xu Lianyong, Han Yongdian, et al. Simulation of electron beam welding on titanium alloy (TC4)[J]. Transactions of the China Welding Institution, 2014,35(11):109−112,118. (曾庆继, 徐连勇, 韩永典, 等. 钛合金(TC4)电子束焊接模拟[J]. 焊接学报, 2014,35(11):109−112,118.

    Zeng Qingji, Xu Lianyong, Han Yongdian, et al. Simulation of electron beam welding on titanium alloy (TC4) [J]. Transactions of the China Welding Institution, 2014, 35(11): 109-112, 118.
    [7] Zhang Hong, Men Zhengxing, Li Jiukai, et al. Numerical simulation of the electron beam welding and post welding heat treatment coupling process[J]. High Temperature Materials and Processes, 2018,37(9-10):793−800. doi: 10.1515/htmp-2017-0053
    [8] Dong Pingsha, Song Shaopin, Zhang Jinmiao. Analysis of residual stress relief mechanisms in post-weld heat treatment[J]. International Journal of Pressure Vessels and Piping, 2014,122:6−14. doi: 10.1016/j.ijpvp.2014.06.002
    [9] Lu Shijie, Wang Hu, Dai Peiyuan, et al. Influence of creep on prediction accuracy and computational efficiency of residual stress in post-weld heat treatment[J]. Acta Metallurgica Sinica, 2019,55(12):1581−1592. (逯世杰, 王 虎, 戴培元, 等. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019,55(12):1581−1592.

    Lu Shijie, Wang Hu, Dai Peiyuan, et al. Influence of creep on prediction accuracy and computational efficiency of residual stress in post-weld heat treatment [J]. Acta Metallurgica Sinica, 2019, 55(12): 1581-1592.
    [10] Liang Guangbing, Zhu Jinhong, Yin Danqing, et al. Numerical simulation of path selection for laser cladding of TC4 titanium alloy[J]. Journal of Henan University of Science and Technology (Natural Science Edition), 2021,42(6):12−18. (梁广冰, 朱锦洪, 尹丹青, 等. TC4钛合金激光熔覆路径选择数值模拟研究[J]. 河南科技大学学报(自然科学版), 2021,42(6):12−18.

    Liang Guangbing, Zhu Jinhong, Yin Danqing, et al. Numerical simulation of path selection for laser cladding of TC4 titanium alloy [J]. Journal of Henan University of Science and Technology (Natural Science Edition), 2021, 42(6): 12-18.
    [11] Zhuang Mingxiang, Zhao An’an, Wang Haojun, et al. Low cycle fatigue and fracture behavior of electron beam welding joint of TC4 titanium alloy[J]. Welding, 2022,(2):39−45. (庄明祥, 赵安安, 王浩军, 等. TC4钛合金电子束焊接头低周疲劳性能与断裂行为[J]. 焊接, 2022,(2):39−45.

    Zhuang Mingxiang, Zhao Anan, Wang Haojun, et al. Low cycle fatigue and fracture behavior of electron beam welding joint of TC4 titanium alloy [J]. Welding, 2022(2): 39-45.
    [12] Ge Keke, Zhang Bowen, Xu Qiang, et al. Simulation of residual stress in electron beam welding of thick titanium alloy plate[J]. Hot Working Technology, 2021,50(7):151−155,160. (葛可可, 张博文, 徐强, 等. 钛合金厚板电子束焊接残余应力模拟研究[J]. 热加工工艺, 2021,50(7):151−155,160. doi: 10.14158/j.cnki.1001-3814.20192111

    Ge Keke, Zhang Bowen, Xu Qiang, et al. Simulation of residual stress in electron beam welding of thick titanium alloy plate [J]. Hot Working Technology, 2021, 50(7): 151-155, 160. doi: 10.14158/j.cnki.1001-3814.20192111
    [13] 丁 盼. 钛合金型材数控热拉弯蠕变成形仿真建模及工艺优化研究[D]. 北京: 北京航空航天大学, 2015.

    Ding Pan. Simulation modeling and process optimization of NC hot tension creep forming of titanium alloy profiles[D]. Beijing: Beijing University of Aeronautics and Astronautics, 2015.
    [14] Yu Chen, Chen Jing, Chen Huining, et al. Three-dimensional stress of TC4 titanium alloy test plate with magnetically controlled narrow gap TIG welding before and after heat treatment[J]. Journal of Mechanical Engineering, 2019,55(6):61−66. (余 陈, 陈 静, 陈怀宁, 等. TC4钛合金磁控窄间隙TIG焊试板热处理前后三维应力[J]. 机械工程学报, 2019,55(6):61−66. doi: 10.3901/JME.2019.06.061

    Yu Chen, Chen Jing, Chen Huining, et al. Three-dimensional stress of TC4 titanium alloy test plate with magnetically controlled narrow gap TIG welding before and after heat treatment [J]. Journal of Mechanical Engineering, 2019, 55(6): 61-66. doi: 10.3901/JME.2019.06.061
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  247
  • HTML全文浏览量:  105
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-18
  • 网络出版日期:  2023-11-04
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回