留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焊后热处理对钛合金对接板疲劳寿命影响的数值模拟

罗家元 张宇翔 吕晨轲

罗家元, 张宇翔, 吕晨轲. 焊后热处理对钛合金对接板疲劳寿命影响的数值模拟[J]. 钢铁钒钛, 2023, 44(5): 76-83. doi: 10.7513/j.issn.1004-7638.2023.05.012
引用本文: 罗家元, 张宇翔, 吕晨轲. 焊后热处理对钛合金对接板疲劳寿命影响的数值模拟[J]. 钢铁钒钛, 2023, 44(5): 76-83. doi: 10.7513/j.issn.1004-7638.2023.05.012
Luo Jiayuan, Zhang Yuxiang, Lü Chenke. Numerical simulation of the effect of post-welding heat treatment on fatigue life of titanium alloy butt plate[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 76-83. doi: 10.7513/j.issn.1004-7638.2023.05.012
Citation: Luo Jiayuan, Zhang Yuxiang, Lü Chenke. Numerical simulation of the effect of post-welding heat treatment on fatigue life of titanium alloy butt plate[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 76-83. doi: 10.7513/j.issn.1004-7638.2023.05.012

焊后热处理对钛合金对接板疲劳寿命影响的数值模拟

doi: 10.7513/j.issn.1004-7638.2023.05.012
基金项目: 重庆市技术创新与应用发展专项重点项目(cstc2021jscx-dxwtBX0022);国家重点研发计划项目(2020YFF0404209);重庆市博士后特别资助项目(Xm2017034)。
详细信息
    作者简介:

    罗家元,1978年出生,男,湖北黄冈人,博士,副教授,主要研究方向:残余应力评估及消除、结构疲劳寿命分析,E-mail:jiayuan_luo@126.com

    通讯作者:

    张宇翔,1998年出生,男,河南驻马店人,硕士,主要研究方向:焊接残余应力评估及结构疲劳寿命分析,E-mail:342210383@qq.com

  • 中图分类号: TF823,TG405

Numerical simulation of the effect of post-welding heat treatment on fatigue life of titanium alloy butt plate

  • 摘要: 基于有限元软件建立了考虑蠕变应力松弛效应的30 mm厚TC4钛合金对接板的热—弹—塑性有限元模型,采用该模型模拟了TC4钛合金对接板电子束焊接过程中的温度场与应力场,对比了3种焊后热处理工艺下对接板内部残余应力分布情况,得出最优的焊后热处理工艺。通过疲劳分析软件fe-safe分析了焊后热处理对于对接板疲劳性能的影响。结果表明,数值模拟得到的残余应力分布情况较为准确。对接板经过700 ℃$ \times $2 h焊后热处理,其内部横向、纵向残余应力基本完全消除,峰值分别为28、46.3 MPa。蠕变效应在焊后热处理消除残余应力的过程中起重要作用,经过焊后热处理,对接板焊缝与热影响区的疲劳安全系数由0.192提升至0.7左右。
  • 图  1  TC4钛合金对接板网格结构

    Figure  1.  Grid structure of TC4 titanium alloy butt plate

    图  2  热循环曲线

    Figure  2.  Thermal cycle curve

    图  3  熔池对比

    Figure  3.  Molten pool comparison

    图  4  残余应力分布云图

    Figure  4.  Residual stress distribution cloud diagram

    图  5  路径分布

    Figure  5.  Path distribution diagram

    图  6  残余应力分布曲线

    Figure  6.  Distribution curve of residual stress

    图  7  焊后热处理后对接板内部残余应力曲线

    Figure  7.  Internal residual stress curve of butt plate after post-welding heat treatment

    图  8  纵向残余应力变化曲线

    Figure  8.  Longitudinal residual stress curve

    图  9  焊后热处理过程中弹性应变、塑性应变及蠕变应变随时间变化曲线

    Figure  9.  Curves of elastic, plastic and creep strains with time during post-welding heat treatment

    图  10  疲劳安全系数

    Figure  10.  Fatigue safety factor

    表  1  蠕变本构方程参数

    Table  1.   Creep constitutive equation parameters

    温度/ ℃A3n2$ \alpha $Q/(J·mol−1)
    5009.764e-66.000.0028919213.78
    6009.764e-63.160.0064914632.57
    7009.764e-62.140.020719967.6
    下载: 导出CSV
  • [1] Yu Changli, Guo Qibo, Gong Xiaobo, et al. Fatigue life assessment of pressure hull of deep-sea submergence vehicle[J]. Ocean Engineering, 2022,245:110528. doi: 10.1016/j.oceaneng.2022.110528
    [2] He Yifan, Chen Donggao, Zhang Long, et al. Study on microstructure and properties of TC4 titanium alloy MIG welded ioint after heat treatment[J]. Iron Steel Vanadium Titanium, 2021,42(6):164−170. (何逸凡, 陈东高, 张龙, 等. TC4钛合金MIG焊接头热处理后组织性能研究[J]. 钢铁钒钛, 2021,42(6):164−170.

    He Yifan, Chen Donggao, Zhang Long, et al. Study on microstructure and properties of TC4 titanium alloy MIG welded ioint after heat treatment [J]. Iron Steel Vanadium Titanium, 2021, 42(6): 164-170.
    [3] Ou Peng, Cao Zengqiang, Rong Ju, et al. Molecular dynamics study on the welding behavior in dissimilar TC4-TA17 titanium alloys[J]. Materials, 2022,15(16):5606. doi: 10.3390/ma15165606
    [4] Li Dadong, Bai Wei, Deng Jian, et al. Study on vacuum electron beam welding of 50 mm thick plate TC4 and TA17 titanium alloy[J]. Iron Steel Vanadium Titanium, 2022,43(3):40−46. (李大东, 白威, 邓健, 等. 50 mm厚板TC4及TA17钛合金真空电子束焊接工艺研究[J]. 钢铁钒钛, 2022,43(3):40−46.

    Li Dadong, Bai Wei, Deng Jian, et al. Study on vacuum electron beam welding of 50 mm thick plate TC4 and TA17 titanium alloy [J]. Iron Steel Vanadium Titanium, 2022, 43(3): 40-46.
    [5] Liu Chuan, Wu Bing, Zhang Jianxun. Numerical investigation of residual stress in thick titanium alloy plate joined with electron beam welding[J]. Metallurgical and Materials Transactions, 2010,41B(5):1129−1138.
    [6] Zeng Qingji, Xu Lianyong, Han Yongdian, et al. Simulation of electron beam welding on titanium alloy (TC4)[J]. Transactions of the China Welding Institution, 2014,35(11):109−112,118. (曾庆继, 徐连勇, 韩永典, 等. 钛合金(TC4)电子束焊接模拟[J]. 焊接学报, 2014,35(11):109−112,118.

    Zeng Qingji, Xu Lianyong, Han Yongdian, et al. Simulation of electron beam welding on titanium alloy (TC4) [J]. Transactions of the China Welding Institution, 2014, 35(11): 109-112, 118.
    [7] Zhang Hong, Men Zhengxing, Li Jiukai, et al. Numerical simulation of the electron beam welding and post welding heat treatment coupling process[J]. High Temperature Materials and Processes, 2018,37(9-10):793−800. doi: 10.1515/htmp-2017-0053
    [8] Dong Pingsha, Song Shaopin, Zhang Jinmiao. Analysis of residual stress relief mechanisms in post-weld heat treatment[J]. International Journal of Pressure Vessels and Piping, 2014,122:6−14. doi: 10.1016/j.ijpvp.2014.06.002
    [9] Lu Shijie, Wang Hu, Dai Peiyuan, et al. Influence of creep on prediction accuracy and computational efficiency of residual stress in post-weld heat treatment[J]. Acta Metallurgica Sinica, 2019,55(12):1581−1592. (逯世杰, 王 虎, 戴培元, 等. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019,55(12):1581−1592.

    Lu Shijie, Wang Hu, Dai Peiyuan, et al. Influence of creep on prediction accuracy and computational efficiency of residual stress in post-weld heat treatment [J]. Acta Metallurgica Sinica, 2019, 55(12): 1581-1592.
    [10] Liang Guangbing, Zhu Jinhong, Yin Danqing, et al. Numerical simulation of path selection for laser cladding of TC4 titanium alloy[J]. Journal of Henan University of Science and Technology (Natural Science Edition), 2021,42(6):12−18. (梁广冰, 朱锦洪, 尹丹青, 等. TC4钛合金激光熔覆路径选择数值模拟研究[J]. 河南科技大学学报(自然科学版), 2021,42(6):12−18.

    Liang Guangbing, Zhu Jinhong, Yin Danqing, et al. Numerical simulation of path selection for laser cladding of TC4 titanium alloy [J]. Journal of Henan University of Science and Technology (Natural Science Edition), 2021, 42(6): 12-18.
    [11] Zhuang Mingxiang, Zhao An’an, Wang Haojun, et al. Low cycle fatigue and fracture behavior of electron beam welding joint of TC4 titanium alloy[J]. Welding, 2022,(2):39−45. (庄明祥, 赵安安, 王浩军, 等. TC4钛合金电子束焊接头低周疲劳性能与断裂行为[J]. 焊接, 2022,(2):39−45.

    Zhuang Mingxiang, Zhao Anan, Wang Haojun, et al. Low cycle fatigue and fracture behavior of electron beam welding joint of TC4 titanium alloy [J]. Welding, 2022(2): 39-45.
    [12] Ge Keke, Zhang Bowen, Xu Qiang, et al. Simulation of residual stress in electron beam welding of thick titanium alloy plate[J]. Hot Working Technology, 2021,50(7):151−155,160. (葛可可, 张博文, 徐强, 等. 钛合金厚板电子束焊接残余应力模拟研究[J]. 热加工工艺, 2021,50(7):151−155,160. doi: 10.14158/j.cnki.1001-3814.20192111

    Ge Keke, Zhang Bowen, Xu Qiang, et al. Simulation of residual stress in electron beam welding of thick titanium alloy plate [J]. Hot Working Technology, 2021, 50(7): 151-155, 160. doi: 10.14158/j.cnki.1001-3814.20192111
    [13] 丁 盼. 钛合金型材数控热拉弯蠕变成形仿真建模及工艺优化研究[D]. 北京: 北京航空航天大学, 2015.

    Ding Pan. Simulation modeling and process optimization of NC hot tension creep forming of titanium alloy profiles[D]. Beijing: Beijing University of Aeronautics and Astronautics, 2015.
    [14] Yu Chen, Chen Jing, Chen Huining, et al. Three-dimensional stress of TC4 titanium alloy test plate with magnetically controlled narrow gap TIG welding before and after heat treatment[J]. Journal of Mechanical Engineering, 2019,55(6):61−66. (余 陈, 陈 静, 陈怀宁, 等. TC4钛合金磁控窄间隙TIG焊试板热处理前后三维应力[J]. 机械工程学报, 2019,55(6):61−66. doi: 10.3901/JME.2019.06.061

    Yu Chen, Chen Jing, Chen Huining, et al. Three-dimensional stress of TC4 titanium alloy test plate with magnetically controlled narrow gap TIG welding before and after heat treatment [J]. Journal of Mechanical Engineering, 2019, 55(6): 61-66. doi: 10.3901/JME.2019.06.061
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  32
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-18
  • 网络出版日期:  2023-11-04
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回