Numerical simulation of the effect of post-welding heat treatment on fatigue life of titanium alloy butt plate
-
摘要: 基于有限元软件建立了考虑蠕变应力松弛效应的30 mm厚TC4钛合金对接板的热—弹—塑性有限元模型,采用该模型模拟了TC4钛合金对接板电子束焊接过程中的温度场与应力场,对比了3种焊后热处理工艺下对接板内部残余应力分布情况,得出最优的焊后热处理工艺。通过疲劳分析软件fe-safe分析了焊后热处理对于对接板疲劳性能的影响。结果表明,数值模拟得到的残余应力分布情况较为准确。对接板经过700 ℃
$ \times $ 2 h焊后热处理,其内部横向、纵向残余应力基本完全消除,峰值分别为28、46.3 MPa。蠕变效应在焊后热处理消除残余应力的过程中起重要作用,经过焊后热处理,对接板焊缝与热影响区的疲劳安全系数由0.192提升至0.7左右。Abstract: Based on the finite element software, a thermo-elastic-plastic finite element model of 30 mm thick TC4 titanium alloy butt plate considering the creep stress relaxation effect was established. The temperature field and stress field in the electron beam welding process of TC4 titanium alloy butt plate were simulated by this model, and the distribution of residual stress in the butt plate under three post-welding heat treatment processes was compared. The optimal post-welding heat treatment process is obtained. Fatigue analysis software fe-safe was used to analyze the influence of heat treatment on the fatigue properties of butt plate. The results show that the residual stress distribution obtained by numerical simulation is accurate. After 700 ℃×2 h post-welding heat treatment, the internal transverse and longitudinal residual stresses of the butt plate were completely eliminated, and the peak values are 28 MPa and 46.3 MPa, respectively. The creep effect plays an important role in the process of post-welding heat treatment to eliminate the residual stress, and the fatigue safety factor of welding seam and heat-affected zone of the butt plate can be increased from 0.192 to about 0.7. -
表 1 蠕变本构方程参数
Table 1. Creep constitutive equation parameters
温度/ ℃ A3 n2 $ \alpha $ Q/(J·mol−1) 500 9.764e-6 6.00 0.00289 19213.78 600 9.764e-6 3.16 0.00649 14632.57 700 9.764e-6 2.14 0.0207 19967.6 -
[1] Yu Changli, Guo Qibo, Gong Xiaobo, et al. Fatigue life assessment of pressure hull of deep-sea submergence vehicle[J]. Ocean Engineering, 2022,245:110528. doi: 10.1016/j.oceaneng.2022.110528 [2] He Yifan, Chen Donggao, Zhang Long, et al. Study on microstructure and properties of TC4 titanium alloy MIG welded ioint after heat treatment[J]. Iron Steel Vanadium Titanium, 2021,42(6):164−170. (何逸凡, 陈东高, 张龙, 等. TC4钛合金MIG焊接头热处理后组织性能研究[J]. 钢铁钒钛, 2021,42(6):164−170.He Yifan, Chen Donggao, Zhang Long, et al. Study on microstructure and properties of TC4 titanium alloy MIG welded ioint after heat treatment [J]. Iron Steel Vanadium Titanium, 2021, 42(6): 164-170. [3] Ou Peng, Cao Zengqiang, Rong Ju, et al. Molecular dynamics study on the welding behavior in dissimilar TC4-TA17 titanium alloys[J]. Materials, 2022,15(16):5606. doi: 10.3390/ma15165606 [4] Li Dadong, Bai Wei, Deng Jian, et al. Study on vacuum electron beam welding of 50 mm thick plate TC4 and TA17 titanium alloy[J]. Iron Steel Vanadium Titanium, 2022,43(3):40−46. (李大东, 白威, 邓健, 等. 50 mm厚板TC4及TA17钛合金真空电子束焊接工艺研究[J]. 钢铁钒钛, 2022,43(3):40−46.Li Dadong, Bai Wei, Deng Jian, et al. Study on vacuum electron beam welding of 50 mm thick plate TC4 and TA17 titanium alloy [J]. Iron Steel Vanadium Titanium, 2022, 43(3): 40-46. [5] Liu Chuan, Wu Bing, Zhang Jianxun. Numerical investigation of residual stress in thick titanium alloy plate joined with electron beam welding[J]. Metallurgical and Materials Transactions, 2010,41B(5):1129−1138. [6] Zeng Qingji, Xu Lianyong, Han Yongdian, et al. Simulation of electron beam welding on titanium alloy (TC4)[J]. Transactions of the China Welding Institution, 2014,35(11):109−112,118. (曾庆继, 徐连勇, 韩永典, 等. 钛合金(TC4)电子束焊接模拟[J]. 焊接学报, 2014,35(11):109−112,118.Zeng Qingji, Xu Lianyong, Han Yongdian, et al. Simulation of electron beam welding on titanium alloy (TC4) [J]. Transactions of the China Welding Institution, 2014, 35(11): 109-112, 118. [7] Zhang Hong, Men Zhengxing, Li Jiukai, et al. Numerical simulation of the electron beam welding and post welding heat treatment coupling process[J]. High Temperature Materials and Processes, 2018,37(9-10):793−800. doi: 10.1515/htmp-2017-0053 [8] Dong Pingsha, Song Shaopin, Zhang Jinmiao. Analysis of residual stress relief mechanisms in post-weld heat treatment[J]. International Journal of Pressure Vessels and Piping, 2014,122:6−14. doi: 10.1016/j.ijpvp.2014.06.002 [9] Lu Shijie, Wang Hu, Dai Peiyuan, et al. Influence of creep on prediction accuracy and computational efficiency of residual stress in post-weld heat treatment[J]. Acta Metallurgica Sinica, 2019,55(12):1581−1592. (逯世杰, 王 虎, 戴培元, 等. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019,55(12):1581−1592.Lu Shijie, Wang Hu, Dai Peiyuan, et al. Influence of creep on prediction accuracy and computational efficiency of residual stress in post-weld heat treatment [J]. Acta Metallurgica Sinica, 2019, 55(12): 1581-1592. [10] Liang Guangbing, Zhu Jinhong, Yin Danqing, et al. Numerical simulation of path selection for laser cladding of TC4 titanium alloy[J]. Journal of Henan University of Science and Technology (Natural Science Edition), 2021,42(6):12−18. (梁广冰, 朱锦洪, 尹丹青, 等. TC4钛合金激光熔覆路径选择数值模拟研究[J]. 河南科技大学学报(自然科学版), 2021,42(6):12−18.Liang Guangbing, Zhu Jinhong, Yin Danqing, et al. Numerical simulation of path selection for laser cladding of TC4 titanium alloy [J]. Journal of Henan University of Science and Technology (Natural Science Edition), 2021, 42(6): 12-18. [11] Zhuang Mingxiang, Zhao An’an, Wang Haojun, et al. Low cycle fatigue and fracture behavior of electron beam welding joint of TC4 titanium alloy[J]. Welding, 2022,(2):39−45. (庄明祥, 赵安安, 王浩军, 等. TC4钛合金电子束焊接头低周疲劳性能与断裂行为[J]. 焊接, 2022,(2):39−45.Zhuang Mingxiang, Zhao Anan, Wang Haojun, et al. Low cycle fatigue and fracture behavior of electron beam welding joint of TC4 titanium alloy [J]. Welding, 2022(2): 39-45. [12] Ge Keke, Zhang Bowen, Xu Qiang, et al. Simulation of residual stress in electron beam welding of thick titanium alloy plate[J]. Hot Working Technology, 2021,50(7):151−155,160. (葛可可, 张博文, 徐强, 等. 钛合金厚板电子束焊接残余应力模拟研究[J]. 热加工工艺, 2021,50(7):151−155,160. doi: 10.14158/j.cnki.1001-3814.20192111Ge Keke, Zhang Bowen, Xu Qiang, et al. Simulation of residual stress in electron beam welding of thick titanium alloy plate [J]. Hot Working Technology, 2021, 50(7): 151-155, 160. doi: 10.14158/j.cnki.1001-3814.20192111 [13] 丁 盼. 钛合金型材数控热拉弯蠕变成形仿真建模及工艺优化研究[D]. 北京: 北京航空航天大学, 2015.Ding Pan. Simulation modeling and process optimization of NC hot tension creep forming of titanium alloy profiles[D]. Beijing: Beijing University of Aeronautics and Astronautics, 2015. [14] Yu Chen, Chen Jing, Chen Huining, et al. Three-dimensional stress of TC4 titanium alloy test plate with magnetically controlled narrow gap TIG welding before and after heat treatment[J]. Journal of Mechanical Engineering, 2019,55(6):61−66. (余 陈, 陈 静, 陈怀宁, 等. TC4钛合金磁控窄间隙TIG焊试板热处理前后三维应力[J]. 机械工程学报, 2019,55(6):61−66. doi: 10.3901/JME.2019.06.061Yu Chen, Chen Jing, Chen Huining, et al. Three-dimensional stress of TC4 titanium alloy test plate with magnetically controlled narrow gap TIG welding before and after heat treatment [J]. Journal of Mechanical Engineering, 2019, 55(6): 61-66. doi: 10.3901/JME.2019.06.061 -